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Abstract This article describes a new and efficient algorithm for parsing (called tunnel

parsing) that parses from left to right on the basis of context-free grammar

without left recursion nor rules that recognize empty words. The algorithm is

mostly applicable for domain-specific languages. In the article, particular at-

tention is paid to the parsing of grammar element repetitions. As a result of the

parsing, a statically typed concrete syntax tree is built from top to bottom, that

accurately reflects the grammar. The parsing is not done through a recursion,

but through an iteration. The tunnel parsing algorithm uses the grammars

directly without a prior refactoring and is with a linear time complexity for

deterministic context-free grammars.
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1. Introduction

Many software systems process data that is formatted on the basis of some formal

language. The most commonly used grammars to describe formal languages are as

follows: regular grammar – the recognition based on such grammar is done by

a finite state machine (deterministic or nondeterministic depending on the

grammar); context-free grammar [28] – the recognition is done by a nondeter-

ministic pushdown automata; and deterministic context-free grammar –

where the recognition is done by a deterministic pushdown automata.

In order to understand the meaning of the data for a given language, a recognition

process must be performed – parsing [2]. The recognition is performed by the use of

the grammar rules. The main goals of the parsing are as follows:

• Check that a given string of characters (for short string) belongs to a given

language.

• Build a syntax tree (a data structure containing a syntactic information) for the

string.

As a successful parsing result, two types of syntax trees can be generated –

abstract and concrete. An abstract syntax tree may not contain all of the grammar

rules that are used during the parsing nor some of the recognized characters that

are implied from the context (for example, the parentheses around mathematical

expressions [1]). In contrast, a concrete syntax tree contains all of the used rules

and recognized characters during the parsing. In a source code, a syntax tree can be

represented in two ways: statically typed syntax tree – with different data types

for each rule and grammatical element; and dynamically typed syntax tree – the

rules and the elements are represented by a common data type. During runtime, for

a dynamically typed tree, many dynamic checks must be performed to distinguish the

real object represented by the common data type. This article covers statically typed

concrete syntax trees because they do not require additional checks for the data types

of the objects stored in the tree at runtime.

Grammars often use special rules for expressing an empty string [2] (a sequence

of zero characters). An empty string is denoted as ε, and the grammar rule that

recognizes ε, will be called ε-rule. The article describes an effective algorithm for the

parsing of strings that contain countable repetitions and the building of the relevant

statically typed concrete syntax trees, by the use of context-free grammars without

left recursion and ε-rules [33].

Section 2 provides an overview of the parsing process as well as common ap-

proaches of its implementation. Section 3 introduces some basic concepts and parsing

problems that are relevant to the article. Section 4 describes the tunnel parsing al-

gorithm. Section 5 contains an example parsing with various changes to the internal

state of the parser as part of the parsing machine (PM) – an object that performs

all of the recognition steps of the input string such as lexing, parsing, and the eventual

build of a syntax tree. The section also contains information for the runtime speed
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performance and memory usage of the algorithm. Section 6 describes the future de-

velopment of the algorithm and some of its other features that are not covered by the

article.

2. Overview

The extraction of a meaning from a string by the software systems is done through

a process with the following steps:

1. If the input data is encoded by any character encoding standards such as ASCII,

UTF-8, or UTF-16, they are decoded into characters.

2. The characters from the previous step are grouped into tokens (optionally) by

a lexical grammar describing the syntax of tokens as formed by characters. The

step ends with a result – a string of tokens.

3. The parsing is performed with the string of tokens as an input by using a parsing

grammar that describes the syntax of the language as formed by tokens.

4. A syntax tree is generated (optionally).

5. The process ends successfully or with an error found in the input (a string that

does not belong to the language).

The characters are often grouped into tokens, by the use of a regular grammar,

which is converted to a nondeterministic finite automaton that can be used directly for

the recognition of the tokens or to be converted to a deterministic finite automaton [25]

and then be used. This conversion is often done in practice [26] by the use of the Brzo-

zowski algorithm [7] to create minimal deterministic final automata. During the tokens

recognition from the automaton, the longest possible match is often taken for each

character group, which is then converted into a token for further processing. If a lexical

analysis is not performed, then each character becomes a token [33].

When it is not necessary to create a syntax tree (as a part of the parsing result),

the grammar can be modified by a process called refactoring [21] to remove the ε-rules

or the left recursion in order to make the parsing possible by certain algorithms,

to reduce the amount of the used memory, or to reduce the recognition time. If

a detailed syntax tree is required (for the translation from one language into another,

compilation, decompilation, or a certain analysis of the input data), any change in the

grammar by the parsing process in order to obtain certain properties and to become

suitable for parsing affects the resulting tree. In this case, the parsing process must

not change the grammar. There are two main syntax tree building algorithms:

• top-down – the first used derivation [9] is the left-most one: the first created

node of the tree is the root, then the left-most subnode in depth; each right

subnode is created after its left sibling, as the last created node is the right-most

one;

• bottom-up – the first used is the right-most derivation: first, the deepest nodes

of the tree are created, then they are grouped into their parent nodes; the last

created node is the root.
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The two main parse strategies are obtained by combining the parse direction

from left to right with the syntax tree building direction. The first strategy, from

left to right with the left-most derivation (LL), enables each grammar rule

to be directly implemented as a function in the target programming language and

the thread-dedicated stack (call stack) to be used to recurse into the rules [18, 23].

The LL parsing makes it easy to add events directly to the grammar (for example,

functions to be called while the parser passes through specific places in the grammar).

The intuitive working method (as a standard software program) of the LL parsing

makes it a more appropriate strategy to use. These types of parsers can be developed

manually and generated automatically [4, 18,33].

In the second strategy (from left to right with the right-most derivation – LR),

a list of syntax tree nodes is maintained during the parsing. The two main possible

operations are: a) moving the last nodes from the list as sub nodes in a new node

that takes their place at the end of the list (called a reduce operation), and b) shifting

of a symbol from the input string to the end of the list as a new single node (called

a shift operation [3, 15]).

The necessary symbols for making the decision to move the PM from one step to

another will be called look-ahead symbols. When the parsing is done on the basis

of a deterministic context-free grammar, one look-ahead symbol (at most) is required

from the PM to progress. For some context-free grammars, the number of look-ahead

symbols might be greater than one.

The parsing algorithms can be classified by the type of grammar that they can

use. Of practical interest are those that use context-free grammars and particularly

deterministic context-free grammars, as many programming languages and structured

data are represented with them [11,31,34]. There are many linear algorithms for pars-

ing of different grammar classes by the use of different parsing strategies. For exam-

ple, the parsing expression grammars (PEG) [13] target the actual parser generation

(not the enumeration of all possible strings that are targeted by the context-free gram-

mars). A PEG is never ambiguous because of the way the parsing is performed: the

first match found is used to continue the parsing, and the other alternatives are not

explored. The PEG parsers that use memoization [22] run in linear time and are called

packrat parsers [12]. The memoization can be used to accommodate the ambiguity

and left recursion in polynomial time [14]. There are general parsing strategies that

can produce all possible parse trees (a parse forest). A parse forest can be efficiently

represented as a ”shared-packed forest” [32] by a generalized LR parser (GLR). Such

a forest can be pruned after the parsing has been completed [20]. The GLR parsers

may operate without an explicit lexer by the use of disambiguation filters [6]. The

generalized LL parser [27] runs in the worst case with a cubic time by maintaining

multiple process threads [19] to facilitate full backtracking. The generalized parsers

run in linear time for deterministic grammars.

The context-free grammars (including the deterministic ones) can be a basis for

parsing by a nondeterministic pushdown automaton where, for each grammar rule,
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a finite-state automaton is constructed. During parsing, these parsers use a link to

a current automaton state – one of the generated automaton states for the grammar

rules. The link changes its targeted state at the parsing steps depending on the sym-

bols in the input string and the transitions from the current to the next automaton

states. When a reference to another automaton is reached in the current automa-

ton then the currently linked automaton state is added to a stack (called a depth

stack). Then, the parsing continues with a new linked current state, which is the

beginning of the referenced automaton. When the new automaton is completed, then

the previous automaton state is popped from the depth stack and the parsing contin-

ues after it.

If a state is reached where it is not possible to continue the execution for a given

input symbol during the parsing, then the following actions can be performed:

• When the parsing algorithm is LL, then the depth stack can be examined for

all possible symbols that can be recognized in the place of the current wrong

symbol. The found list of possible symbols is then displayed to the user, which

is an intuitive solution for diagnosing input string errors and is more difficult to

make for a parser that uses LR parsing.

• If the parsing machine only works with automata based on a deterministic gram-

mar, then the parsing can be terminated immediately after the first error.

• If the parsing machine operates as a nondeterministic pushdown automaton,

then the implementation must step back into the current automaton (possibly

using the depth stack) and search for another path where it might recognize the

input symbol. The maximum number of times for which it makes sense to go

back is the maximum number of looking-ahead symbols, which is sufficient for the

language recognition. There are algorithms [29] that can predict at the point of

the error (by heuristics or randomly) which symbol(s) should be in the place

of the erroneous one, to add or remove some of the input symbols and eventually

to modify the depth stack in such a way that the parsing will continue after

the error.

3. Problem

The purpose of this article is to present an efficient and iterative parsing algorithm

(called tunnel parsing) that supports countable repetitions as defined by the ABNF [5]

standard (or any other metasyntax that has the same expressive power, such as ex-

tended BNF [17], for example, which supports a maximum occurrences of an element

in its syntax but not a minimum). The result of a successful parsing with the algo-

rithm is a concrete syntax tree that mirrors the grammar structure without losing

information that can be used for a direct translation from one language into another.

As defined in this article, the grammars that are accepted by the algorithm are with-

out left recursion and ε-rules. The built statically typed concrete syntax trees from

Tunnel Grammar Studio (TGS) [33] that implements the algorithm can be processed
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quickly without dynamic checks of the data types stored in the tree and are self-

sufficient – the tree contains all of the information in itself without references to other

external data structures.

In tunnel parsing, as much information as possible is organized in advance from

the grammar (such as rule enter/exit, alternative enter/exit, element repetitions and

omissions, etc.) for a fast parsing, which can also be used at runtime by more than

one PM.

A context-free grammar is defined by a tuple (N , Σ, R, S), where set N contains

all non-terminal symbols [9], set Σ contains all terminal symbols, N ∩ Σ = ∅ (empty

set), set R contains all rules, and S is the start symbol of the grammar, S ∈ N .

The subsequent grammars will be described with the ABNF metasyntax, where the

definitions have the following meanings (only those used in the article are listed):

– "t" – defines a terminal value in ABNF, but for the purpose of this article defines

a terminal symbol (an element of Σ); to simplify the algorithm description, each

terminal symbol will consist of a single character;

– r – defines a non-terminal symbol (r ∈ N): a grammar rule (for short a “rule”)

when it is on the left side of the sign = or a grammar reference (for short a “ref-

erence”) to a rule when it is on the right side;

– x y – concatenated grammar elements (for short, “elements”);

– (z w) – defines a grammar group (for short, a “group”) of elements;

– a / b – defines an alternative (logical or for the elements);

– n*m A – defines the repetitions of A, where n ∈ N is the minimum repetitions

(if omitted, it is considered to be a zero), m ∈ N is the maximum repetitions (if

omitted, it is considered to be an infinity), and n ≤ m.

The groups in an ABNF grammar can be seen as rules with a single implicit

reference to them at the point of the definition. Therefore, everything written about

the rules below will apply to the groups as well. Under a “reference”, it will be

understood as a reference to a rule in the ABNF syntax as well as the implicit reference

to a group when it is seen as a rule.

All of the terminal symbols that can be recognized from the beginning of a rule

directly or by a recursive entering into the referenced rules will be called reachable [16].

Reachable terminal symbols after an element are those that can be recognized after it

without using the possible depth stacks to the rule where the element is located. In

Figure 1 from the beginning of rule main the reachable terminal symbols are: a) "5"

in the rule itself; and b) "5" in rule sub through its reference in rule main.

main = "5" "1" / 2*4 sub

sub = "5"

Figure 1. Linked grammar rules

To recognize repetitions of element A in ABNF syntax n ∗mA where n,m ∈ N,

n ≤ m, m ≥ 2, n is the minimum and m is the maximum of repetitions (which will be
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called a countable repetition), the tunnel parsing uses an additional stack called

a repetition stack that contains the information about the number of times element

A has repeated. The definitions of n and m in this way does not encompass repeti-

tions as 0*1A, *1A, 0*A, *A, 1*1A and 1*A, which are recognized by the appropriate

arrangement of the transitions connecting the states of the automaton used for the

recognition. During the construction of automaton states and transitions for any kind

of an element repetition, the template in Figure 2 is used (some of the transitions may

be removed depending on the values of n and m), where the operations are as follows:

• cpush: pushing a repetition counter with a value of one in the repetition stack;

• cpop: pop one repetition counter from the top of the repetition stack;

• ctop: the repetition counter value in the top of the repetition stack;

• cinc: an incrementation by one of the repetition stack top (i.e., ctop = ctop+ 1).

A
cpush

ctop < mcinc

ctop ≥ n cpop

n = 0

Figure 2. Template for building repeatable element automaton

The tunnel parsing is not implemented as a traditional recursive LL parser in

order to avoid the drawbacks when performing a recursion with the use of the thread-

dedicated stack. The algorithm is implemented as an iterative process to avoid the

stack overflow of the thread-dedicated stack. To reduce the time of entering into

functions in depth, all of the places in the grammar where there will be an in-depth

search for a symbol are discovered at the parser generation time. For each such

place, a control object is created (to be described later), that will guide the parsing

machine at runtime in such a way that the search will be performed only once for

each reachable terminal symbol. The tunnel parsing uses an execution stack that

contains the information about the progress of the PM with a size that is proportional

to the number of look-ahead symbols.

4. Tunnel parsing algorithm

The following steps must be performed to create and use a tunnel parsing machine:

the design of automata, extraction of tunnels, construction of routers, preparation of

segments, creation of a control layer, and parsing.

4.1. Design of automata

An automaton is created for each rule in the grammar (as in Figure 3) whose states

will be called automaton states or only states. The transitions in these automata are

of three types: a) recognizing a terminal symbol at which end there is a terminal
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state; b) not recognizing a terminal symbol but an ε (i.e., no check for a terminal

symbol is required to pass through them), as the transition label may indicate a certain

operation on the internal state of the PM; and c) a reference to an automaton – to

pass this transition, the referenced automaton must be successfully completed first.

Hereafter, the “entering” and “exiting” of a rule or an alternative will mean the use

of the respective transitions in the automaton built for the rule.

main

cpush
sub

ctop > 2 cpop

ctop < 4cinc
main

a

b

e

d

f

g

"5" c "1"

sub sub
u v "5" w x

Figure 3. Automata generated from the grammar in Figure 1

In Figure 3, the dotted line transitions come from the repeatable element template

in Figure 2 with transition n = 0 removed, as the minimum repetition is n = 2. The

labels in the figure are as follows: a – entering into rule main; b and e – entering in

the first and the second alternatives; c – next element; d and f – exiting from the first

and the second alternatives with a success; g – exiting from rule main with success;

u – entering in rule sub; v – entering into the first alternative of rule sub; w – exiting

from the first alternative of rule sub; and x – exiting from rule sub with a success.

4.2. Extraction of tunnels

A tunnel is a group of operations for changing the internal state of a PM and the

related operations for the syntax tree building. To enable a context-free grammar

recognition, for each forward tunnel1, there must be a backward tunnel2. For

deterministic context-free grammars, the use of backward tunnels is not necessary.

For each rule start state, each state after a reference, and each terminal state of

each automaton, all transitions to the next reachable terminal states are collected into

tunnels in a depth-first search manner. In Figure 4, the dashed line shows the process

of searching for and recording of the tunnels for terminal symbol "5". Of all of the

operations used from the template in Figure 2, only cpush is recorded into the tunnels.

The rest of the operations are performed by the PM during the exiting of the refer-

enced rule.The following definitions are going to be used later on: E – the set of all

transitions in the automata; O – the set of operations that change the depth stack of

the PM; T – the set that contains all of the tunnels τ ∈ T; τ = [e | o]−d+a – donates

a tunnel, where the transitions that the tunnel uses are e = {e1, e2, ...}, ei ∈ E, i ∈ N;

1A tunnel that advances the parsing machine to a successful final state.
2A tunnel that will restore the PM as it was before the use of the forward tunnel.
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the operations that change the depth stack are o = {o1, o2, ...}, ok ∈ O, k ∈ N; d – the

number of counters that will first be removed from the repetition stack; a – the num-

ber of counters (each with a value of one) that will be added to the repetition stack;

¬x – the reverse of x, where x ∈ (E ∪O ∪ cpush); ↓ r – entering into r; and ↑ r – ex-

iting from r (after its successful recognition), where r ∈ N , ↓ r ∈ O and ↑ r ∈ O.

main
a

b

e

"5"

cpush u v "5"

Figure 4. Search space for reachable terminal states

When o = ∅, the tunnel will be written as [e]−d+a, and when both d and a are

zeroes, it will be written as [e]. For the grammar in Figure 1 with automata in Figure 3,

the tunnels are as follows:

• τ0 = [a, b | ↓ main] – for an input symbol "5" from the beginning of rule main;

• τ1 = [¬b, e, u, v | ↓ sub] + 1 – if after τ0 the parsing is unsuccessful, the PM,

will attempt to recognize "5" at the beginning of rule sub by using this tunnel,

whose terminal symbol is also reachable from the beginning of main;

• τ7 = [¬v,¬u,¬e,¬a | ¬ ↓ sub,¬ ↓ main]− 1 – in case of an unsuccessful recogni-

tion after the second reachable terminal symbol "5" from the beginning of rule

main, this tunnel will be used by the PM to change its internal state to the one

before the execution of τ0 and τ1;

• τ2 = [u, v | ↓ sub] – a tunnel for entering into rule sub (directly or by the use of

the reference to it from rule main) for input symbol "5";

• τ3 = [¬v,¬u | ¬ ↓ sub] – a tunnel that reverses the effect of τ3;

• τ4 = [c] – a forward tunnel used after the recognition of "5" that will move the

PM to the automaton state that is before the possible recognition of "1" in rule

main;

• τ6 = [¬c] – a backward tunnel from element "1" to element "5" in rule main;

• τ7 = [d, g | ↑ main], τ8 = [f, g | ↑ main], τ9 = [w, x | ↑ sub] – tunnels for

successful exits for rule main from its two alternatives as well as for rule sub from

its single alternative; and

• τ10 = [¬g,¬d | ¬ ↑ main], τ11 = [¬g,¬f | ¬ ↑ main], τ12 = [¬x,¬w | ¬ ↑ sub] –

tunnels for moving backwards into rule main in its two alternatives and into rule

sub in its single alternative.

4.3. Construction of routers

All reachable terminal states for all key positions (the start states, the states after

each reference, and each terminal state) are collected from the constructed automata.
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When generating a parser that works with the tunnel parsing algorithm [33], the

collected data is stored sorted in static read-only memory to speed up the search for

a next state of the PM at runtime. In Figure 4, the dark automaton states are the

reachable terminal states from the start of the automaton generated for rule main.

The object that contains the information about the sorted states (by the value

of the transition’s terminal symbol that led to the respective terminal state) will be

called a router and each of its elements a path. Thus, by having the tunnels and

the routers before the start of the parsing, there is enough information on how the

PM will progress.

The routers related definitions are as follows: U – the set of all routers in a PM;

σ ∈ Σ – terminal symbol; C – the set of all control states; a control state – c ∈ C;

P – the set of all paths in a router; p – a path into a router as a pair of a terminal

symbol and a control state (described later): σ → c; u = 〈P | cε〉 – a router where

u ∈ U , cε ∈ C, as cε will be used when the terminal symbol is not found in P .

The routers for the grammar in Figure 1 with the automata in Figure 3 are as

follows:

• u0 = 〈"5" → c7 | 〉 – with reachable terminal states from the beginning of rule

main;

• u1 = 〈"5" → c5 | 〉 – with reachable terminal states from the beginning of rule

sub;

• u2 = 〈 | c11 〉 – without reachable terminal states but with an exit path after

"1" in rule main;

• u3 = 〈"1"→ c8 | 〉 – with reachable terminal states after "5" in rule main;

• u4 = 〈 | c13 〉 – without reachable terminal states but with an exit path after

"5" in rule sub.

• u5 = 〈"5" → c9 | 〉 – with reachable terminal states from the repetition of the

reference to rule sub in rule main before the minimum occurrences have been

collected;

• u6 = 〈"5"→ c10 | 〉 – with reachable terminal states from the repetition of the

reference to rule sub in rule main after the minimum and before the maximum

occurrences have been collected;

• u7 = 〈 | c12 〉 – without reachable terminal states but with an exit path after the

reference to rule sub in rule main.

4.4. Preparation of segments

A segment will be called an object that exists for each rule reference. It has a link

to a router with the next reachable terminal states after the corresponding reference.

If the corresponding reference has a countable repetition, then other routers containing

the reachable terminal states from the beginning of the referenced rule are also linked

to by the segment. For example, the grammar in Figure 1 has one segment, which uses

router u5 before the minimum occurrences are collected, router u6 after the minimum

but before the maximum occurrences are collected, and router u7 with reachable
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terminal states after the reference. To be able the PM to control the repetitions, the

segment contains the minimum and the maximum numbers of repetitions defined for

the reference in the grammar.

The depth stack in the tunnel parsing algorithm consists of segments. To enable

the PM to progress backwards to its previous internal states, two additional stacks

exist that are used to archive a portion of the depth stack and the repetition stack and

will be called a depth stack archive and a repetition stack archive, respectively.

When a PM exits a rule (after its successful recognition) the removed element

from the depth stack is not deleted but rather moved to the archive. To control the

backwards progress distance, an integer counter is placed in each element of the execu-

tion stack to count how many elements are moved from the depth stack to the archive.

When there is a backwards progress, the PM will restore the depth stack from its

archive with as many items as the value of that counter. The repetition stack is used

similarly. For example, upon exiting from the template in Figure 2 through the tran-

sition with the cpop label, a counter will be moved from the repetition stack to the

repetition stack archive, and when the transition is used backwards, the repetition

counter from the repetition stack archive will be moved back to the repetition stack.

4.5. Creation of control layer

To control the execution of the PM, a set of objects is created that use the tunnels

and the routers to form a control layer. Each of these control objects can be

in one of several control states (their number depends on the object type) that

are used one after another depending on the input symbols. Each execution stack

element uses one control state per an input symbol. At any given time, no more

than the maximum look-ahead symbols plus one of stack elements are needed for the

algorithm to operate. The PM performs the required operations based only on the top

of the execution stack. After each execution of the operations defined by a control

state the PM may pause, as this is one iterative step in practice. The control objects

signify the information to “where” in the automata the PM has reached, and the

control states – “which” operations must be performed. In this article, the following

control objects and their states are presented:

• c-origin – created for each rule with a link to a router with all reachable terminal

symbols from the beginning of the respective rule; the object has one state: “use”;

• c-terminal – created for each terminal state that has one control state: “use”; it

has a link to a router with all reachable terminal symbols after the respective

terminal state;

• c-token – created for each terminal symbol (without a countable repetition)

that can be found by a router search; there are two control states: a) “use” – the

PM in this state moves with one input symbol forward, and b) “used” – after

a subsequently unsuccessful recognition attempt, the PM in this c-state performs

operations to restore its internal state to the one before the “use” c-state;
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• c-list – created when there is a countable repetition of an element; the object

has four states: “use” – the PM in this state prepares to parse a repetition (by

pushing one in the repetition stack), moves forward to the next input symbol, and

changes its state to “repetition” – used to recognize each subsequent repetition of

the symbol (then, the top of the repetition stack is incremented by one), “back”

– when a symbol different than the expected one appears, the PM moves one

input symbol back (then, the top of the repetition stack is decremented by one),

and “used” – the PM performs operations to restore its internal state to the one

before the repetitions began (one repetition counter is removed from the top of

the repetition stack);

• c-epsilon – created when there is a path with ε transitions from a terminal state

or an automaton state at the end of a rule reference transition to the end of the

automaton; it has one control state exist: “use”;

• c-back-start – created to be used after all reachable (from the start of a rule)

terminal symbols are iterated and none led to the successful recognition of the

input; there is one control state: “use”;

• c-back-token – created to be used after the recognition of a terminal symbol

that is not part of a countable repetition; there is one control state: “use”;

• c-back-list – created analogously to c-back-token and used after the passing

from a reference with a countable repetition to another reachable element where

the parsing has failed and the PM goes back; in this step, one counter is restored

from the repetition stack archive to the repetition stack;

• c-back-minimum – created for each rule when there is at least one reference

to it with minimum > 1 occurrences; the PM in this c-state will decrement the

repetition counter used and replace the top of the execution stack with c-restore

(described later);

• c-back-middle – created for each rule when there is at least one reference to it

with maximum > 1 and maximum > minimum occurrences; this control state

is the same as c-back-minimum, as additionally after the counter is decremented,

the PM will search for terminal states after the respective reference;

• c-unwind – a global control object for the entire PM with one state – “use”,

which is placed on top of the execution stack after the use of c-epsilon; the PM in

this c-state removes one element from the depth stack and adds it to the archive

depth stack as well as increases the exit counter by one; if the element after which

the rule is exited has a countable repetition, then one repetition counter moves

to the archive repetition stack from the repetition stack;

• c-restore – a global control object for the entire PM with one state – “use”,

which restores one or more depth stack elements from the depth stack archive

and decreases the exit counter by one; if the restored segment has a countable

repetition, one item from the repetition stack archive is restored to the repetition

stack; the object remains on top of the execution stack until the exit counter

reaches zero.
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In Table 1, the control objects for the grammar in Figure 1 are written along

with their relationships. Routers u5 and u6 are copies of router u1 together with the

respective control states c9 and c10 instead of c5. That makes the lists of control

objects: (c9, c17) – used on a repetition attempt of the reference to rule sub in

rule main, before the minimum occurrences are collected and (c10, c18) – used on

a repetition attempt of the reference to rule sub in rule main, after the minimum

occurrences are collected. Both lists are based on list (c5, c15) that would be used if

the start rule was sub with first input symbol "5".

Table 1
Control objects for the grammar in Figure 1

Type c-origin

# Router

0 u0

1 u1

Type c-terminal

# Router

2 u2

3 u3

4 u4

Type c-token

# Next c-terminal Tunnel

5 c15 c4 τ2
6 c14 c4 τ1
7 c6 c3 τ0
8 c16 c2 τ4
9 c17 c4 τ2
10 c18 c4 τ2

Global c-objects

# Type

19 c-unwind

20 c-restore

Type c-epsilon

# Forward Backward

11 τ7 τ10
12 τ8 τ11
13 τ9 τ12

Type c-back-*

# * Tunnel

14 start τ7
15 start τ3
16 token τ6
17 minimum τ3
18 middle τ3

Note that there is a list (c7, c6, c14) that is pointed to by router u0. By the use

of this list the PM will effectively iterate the reachable terminal symbols "5" from

the start of rule main, which will be demonstrated later.

4.6. Parsing

A direct real-time parsing is performed by an interpreter, or a parser is generated to

a source code for the target programming language that can be embedded in other

software tools. TGS has a debugger with an integrated interpreter, which performs

the parsing in real-time and visually builds a syntax tree in forward and backward

steps for a given grammar and an input. TGS also generates parsers that operate on

the base of the tunnel parsing algorithm. At runtime, such a parser builds a statically

typed concrete syntax tree by default as instances of object-oriented classes, because

there is enough concrete information for the building from the used tunnels during

the parsing. If some of this information is removed from the tunnels, an abstract

dynamically typed syntax tree with a different level of abstraction can be built.

In tunnel parsing, the number of operations that the PM performs at each iter-

ative step is independent from the number of input symbols. This enables the PM
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to pause and resume its execution almost instantly. If this is not necessary, a good

optimization of the algorithm [33] is the implementation to perform several iterative

steps in a sequence before returning the control to the user of the PM.

5. Results

An example of a tunnel parsing algorithm runtime execution for the grammar in

Figure 1 with automata in Figure 3, initial rule S = main, and three characters of

input data ("555") is presented in Table 2.

Table 2
Execution of a PM for the grammar in Figure 1

# Input Execution Stack Depth Repeat Task

1 .555 c0|use ∅ ∅ search in u0 and found c7
2 .555 c7|use ∅ ∅ use of τ0
3 .555 c7|use ∅ ∅ rule enter

4 .555 c7|use main ∅ next token

5 5.55 c7|use main ∅ control state change

6 5.55 c7|used main ∅ control state addition

7 5.55 c7|used, c3|use main ∅ search in u3 and not found

8 5.55 c7|used, c3|use main ∅ token back, c-state remove

9 .555 c7|used main ∅ next control state

10 .555 c6|use main ∅ use of τ1
11 .555 c6|use main 1 rule enter, next token

12 5.55 c6|use main,sub 1 control state change

13 5.55 c6|used main,sub 1 control state addition

14 5.55 c6|used, c4|use main,sub 1 search in u4 and found c13
15 5.55 c6|used, c13|use main,sub 1 use of τ9
16 5.55 c6|used, c13|use main,sub 1 control state change

17 5.55 c6|used, c19|use main,sub 1 rule exit

18 5.55 c6|used, c19|use main 1 search in u5 and found c9
19 5.55 c6|used, c9|use main 1 use of τ2
20 5.55 c6|used, c9|use main 2 rule enter

21 5.55 c6|used, c9|use main,sub 2 next token

22 55.5 c6|used, c9|use main,sub 2 control state change

23 55.5 c6|used, c9|used main,sub 2 control state addition

24-33: similar to rows 14 to 23 inclusive, with a search [u6 → c10] instead of [u5 → c9]

34-37: similar to rows 14 to 17 inclusive

38 555. ..., c10|used, c19|use main 3 search in u6 and not found

39 555. ..., c10|used, c19|use main 3 search in u7 and found c12
40 555. ..., c10|used, c12|use main 3 repetition archive

41 555. ..., c10|used, c12|use main ∅ use of τ8
42 555. ..., c10|used, c12|use main ∅ control state change

43 555. ..., c10|used, c19|use main ∅ rule exit

44 555. ..., c10|used, c19|use ∅ ∅ success

An alternative execution of the described is first to recognize "5" through the

reference to rule sub. This is an alternation in a different order of the reachable
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terminal symbols in the grammar. The alternation can be in any order when there

are many duplicate reachable terminal symbols in a router. This is correct from the

point of view of the defined grammar, but it is not completely intuitive to the user. If

this is ignored, it is possible to profile the parsing of a large amount of data in order

to determine which reachable terminal symbols have led to a successful recognition

more often. Then, the order of the duplicate terminal symbols in the routers can be

changed to speed up the parsing of a profile-like input.

Table 2 contains step-by-step changes on the internal state of the PM in each row.

The content of the cells in column “Task” signifies the operation(s) performed by the

PM to move from the current row to the next. The overall description of the events

is as follows: a) the parsing starts with a search for a tunnel to use, from the start of

rule main; b) tunnel c7 is found and used; c) the next token is loaded and it is used

to search for the next tunnel in router u3 that has all reachable terminal states after

"5" in rule main; d) no such tunnel is found, so the PM will try the next control state

of c6 which is c7; e) the use of c6 moves the PM into rule sub and one repetition of

the reference is accounted for; f) because there is no next reachable terminal symbols

after "5" in rule sub, the PM will exit the rule with the use of global control object

c19; g) because the repetition counter’s value on the top of the repetition stack is one

and it is less then the minimum required (two), the minimum repetition router u5
for rule sub is used from the PM; h) tunnel c9 is found and used; i) the parsing will

continue until the next repetition of the reference – then, the PM uses router u6 to

search for a tunnel and finds c10; j) the next time a repetition is attempted, it will

fail because there are no more input tokens to use, and router u7 will guide the PM

after the reference; and k) the parsing completes successfully when the depth stack is

empty and there are no more tokens to use.

As described in this article, the parsing can benefit from various optimizations,

which are a consequence of how the algorithm operates:

• The recognition process can be divided into parts – lexical analysis, parsing,

and syntax tree building, which can be run by different program threads so that

a multi-threaded linear parsing is obtained as implemented in [33].

• The lexical analysis and the parsing can be moved to a separate library to be

used by more than one runtime client with only the syntax tree being in the

client program. The library and client program can be in different programming

languages.

• The implementation of the tunnel parsing algorithm can be in the form of an

online algorithm3 as implemented in [33].

An experiment was made with the grammar in Figure 5, which contains 27 rules4

and defines a language consisting of one word – a sequence of one or more lowercase

3An algorithm property to stop when there is not enough input data and to continue when new
data is available.

4The three dots represent the missing rules from C to X that each recognizes one letter and
references the next rule alphabetically.
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letters from the English alphabet. The grammar has an ABNF syntax defined in [5]

and upgraded by [8]. For the parser generators that do not accept it in this format, it

is translated into the syntax of these parser generators. The purpose of the experiment

is to compare the speed of different PMs when they are searching in depth and are

choosing their next internal state from a large number of possible terminal symbols.

The parser generators have the ability to move some computations described by this

grammar in the lexical analysis. However, the purpose of the test is to measure

the parsing speed, not the lexing speed – so, there is no extensive lexical analysis

in the test.

document = 1*a

a = %s"a" / b

b = %s"b" / c

...

y = %s"y" / z

z = %s"z"

Figure 5. Performance test grammar

The results from the test are presented in Figure 6: in Figure 6a, the parsing

throughput (in megabytes); in Figure 6b, the parsing plus the building of the syntax

tree; and in Figure 6c, the memory used as the difference between the end and the start

of the measured parsing period. All of the PMs are compiled by Microsoft® Visual

Studio® 2015 Update 3, on C++ for a 64-bit processor, optimized for speed in re-

lease. The executables are executed in Microsoft® Windows® 10, a 64-bit operation

system. The used hardware is Intel®Core™ i7-4790k @4GHz. The experimental in-

put is 26 sequences of 1 million lowercase letters from the English alphabet. The first

input (Depth 1) is with lowercase letters a, the second input (Depth 2) is with the

letter b, and so on until z (Depth 26). Each value plotted in Figure 6 is the average of

ten consecutive executions of the executable (containing the compiled PM) without

filtering any values. This resembles a real work process when an external program

starts a compiler or an interpreter (which have the PM) for many inputs in a row.

The input data is preloaded into the operative memory, and only the recognition time

(any processing of the input data until the end of the parsing) is measured.

In Figure 6, the labels are: TGS – v1.0.50 [33] (the postfix S means statically

typed concrete syntax tree, and postfix D means dynamically typed concrete syntax

tree), JavaCC and JJTree – v7.0 [10, 18, 30], and ANTLR – v4.8 [4, 23, 24]. Both

the JavaCC and ANTLR generated parsers, built dynamically typed concrete syntax

trees for this experiment.

The results show that TGS with the tunnel parsing algorithm is significantly

superior in performance to the other PMs for this grammar. For example, when

comparing TGS and JavaCC in a parse mode without a syntax tree generation
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(see Figure 6a), the generated PM by the TGS parser parses especially faster when

the depth is less then 15.
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Figure 6. PMs comparison for the grammar in Figure 5: a) parsing; b) parsing plus tree

generation; c) used memory

In Figure 6b, the fastest tree to be completed is the dynamically typed one from

the PM generated by TGS, despite the fact that the used memory is nearly as much

as that used for the statically typed tree, visible in Figure 6c. The concrete trees

generated by TGS and JavaCC are next by the building speed, and the slowest built

with the highest memory usage is made by ANTLR.

The final TGS syntax tree contains each input character in itself, which makes

the tree generated by TGS self-sufficient (without any pointers to external data). For

a contrast, the tree generated by JavaCC+JJTree contains pointers to the first and

last token in each rule, which prevents the memory for the input string associated

structures to be released after the tree has been generated. When the tree is self-

-sufficient, the tree builder and the parsing process itself can be in different programs

and written in different programming languages, which is one of the goals of tunnel

parsing.
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For deterministic grammars, the tunnel parsing algorithm has a linear execution

time relative to the number of input symbols because of the following:

• The PM progress is in iterative steps where each iterative step realizes the op-

erations defined by the current execution stack top. As defined in Section 4.5,

none of these operations is dependent on the input length but only on the current

input symbol (for an eventual search in the routers).

• The control states that are placed on the top of the execution stack are never

repeating because a) each control object has states that are used one after another

and never loop, and b) the c-token control objects will have a next control object

that is one of the c-back type control objects.

Additionally, the following observations can be made: a) the maximum number

of control states executed for any deterministic grammar are linear to the input length

but are not evenly distributed per token (notably, for the right recursive grammars);

b) the stepping backwards into the input string and the again forward (Table 2, Rows 8

and 11) could be optimized (made “lazy”, for example) from the implementation. This

will effectively make the parsing for LL(k > 1) possible with k − 1 tokens of look-

ahead. The current implementation in TGS moves explicitly in the input because this

optimization is possible only for some grammars (such as the grammar in Figure 1);

however, this might change in the future.

In practice [33], not only the parsing but also the syntax tree construction, de-

struction, and its conversion (printing) to a string must be iterative to ensure a robust

runtime. An automatic synchronization [35] of the previously generated trees and re-

flective printing [36] might also be desirable.

6. Conclusion

This article described an algorithm for the parsing of domain-specific languages as

programming languages and data structures. The languages are defined by a context-

-free grammar without left recursion and ε-rules. As a result of the parsing, a concrete

syntax tree can be built from top to bottom. In the article, particular attention has

been paid to the processing of the repetitions of the grammar elements. The algorithm

does not change the grammar prior to the parsing. For this reason, the resulting

syntax tree reflects the grammar precisely. In the tunnel parsing all operations are

performed iteratively to avoid the potential overflow of the thread-dedicated stack.

As defined in the article, the algorithm has a linear execution time when operating

on the basis of a deterministic context-free grammar (the most commonly used in

practice) and with an exponential time in the worst case for some nondeterministic

context-free grammar.

The use of tunnels speeds up the parsing because all of the necessary changes to

the internal state of the PM are executed at once for each reachable terminal symbol

(with the use of a tunnel) without a depth search in the automata by using the thread-

dedicated stack. A PM based on the algorithm uses the control objects, their states,
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the tunnels, and the routers to switch from one internal state to another. If there is

no need to create a syntax tree, then there is no need to store its build information

into the tunnels. This further reduces the amount of the generated code and speeds

up the parsing.

In many programming languages, when a function is called, the memory is al-

located on the thread-dedicated stack for all variables of the function that could be

used. However, not all of them are actually used in every function call. When per-

forming recursive calls of functions, a lot of memory on the stack might be reserved

for the function variables (which will not actually be used). In tunnel parsing, the

required data (arranged in stacks) is only allocated when it is necessary and deleted

when it is no longer needed. This is important for the embedded microcontrollers,

which often have a little operative memory.

The presented algorithm describes an execution of a PM through an iteration,

as the depth relationships between the terminal symbols are accounted at the same

time. The iterative execution avoids the problem of overflowing the thread-dedicated

stack by replacing it with dynamic stacks, which are limited only by the total avail-

able operative memory. The algorithm also can parse some ambiguous grammars

with a linear execution time by choosing one of the many possible ε transitions for

a c-epsilon control object.

A natural subsequent evolution of the current work is the extension of the pre-

sented algorithm with the ability to recognize context-free grammars that have ε-rules

or left recursion.
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