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Abstract

Tunnel Grammar StudioTM is an Integrated Development Environment (IDE). It is

used to develop stand alone1 Parsing Machines (PM) from given Augmented Backus-Naur

Form (ABNF) syntax grammar2. Tunnel Grammar Studio handles parsing determinis-

tically for many types of ambiguous grammars. Each generated PM: can be single or

multi threaded; input different text encodings; optionally preprocess the input charac-

ters and group them into phrases3, for faster parsing and possibly removing language

ambiguities; use the dynamic memory for in depth parsing (preventing stack overflow

problems); emit syntax errors for the input supplied with detailed error location, all

expected at this point tokens and the current erroneous token; returns on successful

parsing an explicit concrete syntax tree (ST). The generated PM source code4 in-

terface is object oriented including the resulting ST. The Tunnel Grammar Studio is

doing analysis on the grammars and displays messages for many ambiguities at compile

time, helping the developer to create deterministic unambiguous grammars that run in

linear time. The ABNF parser in Tunnel Grammar Studio is designed in itself.

1Parsers that does not need any external libraries in their run time
2Defined in RFC 5234 (Internet Standard 68) and updated by RFC 7405 for string sensitivity
3Using a second lexer grammar
4Using standard C++98, with Win32API for the optional multi-threading

5



Introduction

The creation of a capable parser for a given language is time consuming, error prone

task. For more complex languages its very hard to keep track of the determinism level

at the grammar development stage. Tunnel Grammar StudioTM attempts to solve this

problems by generating object oriented parsers from supplied ABNF syntax grammars

as defined in section 1.4. The input of the generated PM is in bytes, that can be decoded

by many different optionally available decoders5 documented at section 5.3. The decoded

input sequence forms Unicode char array that may pass a lexical analysis where one

or more characters can be grouped to phrases6, documented at section 1.4.2. The

phrases are recognized by the parser grammar as a single token. This method of two

phases parsing effectively may parse some ambiguous languages deterministically. During

runtime, the PM are emitting events per input syntax error discovered, that optionally

contain byte offset of the error, Unicode code point offset or textual line and line

character offsets. Additionally the syntax error message may contain information of the

current not recognized token as well as a list of all possible expected tokens at the error

location. The syntax error events are documented in section 5.6. The result of a successful

parsing by a PM is an explicit concrete syntax tree that can be iterated as much as

need before its destructed. The parsing process uses dynamic memory for in depth

recursion, and only few function calls depth are made using the dedicated thread stack

(DTS). As a consequence, the DTS may be significantly reduced, especially important

in server applications. The PM may be run in a single thread (executed in steps or

till completion: error/success) or in up to three threads for multi-threaded (MT)

parallel parsing, where each thread operates on specific part of the parsing pipeline7,

documented at section 2, that may bring noticeable speed up for the PM especially for

longer inputs. How to use, with target the language C++, use cases are at section 5.14.

Additionally grammar examples are available at 6.

5ASCII, ISO 8859-1 (Latin1), WIN 1252, UTF8, UTF16(LE/BE) and UTF32(LE/BE)
6Extension to the ABNF grammar
7The PM does not spawn threads to do parsing for different ambiguous cases, but splits the parsing

in sequential tasks that are run by different threads, effectively creating a pipeline
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Chapter 1

Basics

The ability to ‘read‘ is in the core of many computer programs. Reading is connected

to finding a meaning of the read information often defined as a string of symbols. Most of

the times a single meaning is expected to be found and in case of a computer program this

unique meaning is expected to be found fast. The process of reading is called parsing,

and a string is syntactically ‘correct‘ if it belongs to the given language. A grammar

is used to define a language syntax. If the string is not correct, its often important to

know where in its symbols is the first error and why the error happened. The process of

developing a grammar, especially big and complex, is often hard, additionally the changes

of this grammar are even harder, but with a proper tool, a hard task can become much

easier. This topics and more are covered and answered by Tunnel Grammar StudioTM.

For clarity this manual uses keywords (”MUST”, ”MUST NOT”, ”REQUIRED”,

”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”,

and ”OPTIONAL”) as defined in RFC 2119[1] by The Internet Engineering Task Force

(IETF).

1.1 Parsing

Strictly the parsing is a process of understanding the exact meaning of a string of

symbols (called ‘input‘ of ‘tokens‘ later on) conforming a formal grammar. For direct

and short example the string of three symbols ’1+2’ and a given formal grammar de-

scribing mathematical expressions, the parsing is a process of understanding that this is

a summation of two numbers by one digit each, the first is one and the second is two.

After this knowledge for the string is collected a mathematical processor could realize

the summation and output a solution ’3’. Its important to note that this processor MAY

not know how the parsing process was done, only that the input it have to operate on is

correct.
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1.2 Syntax Tree

The result of a parsing process is often a Syntax Tree (ST). This is a tree, that

represents the elements found in the process and their relations. For the example up, the

ST could be with a root the sign ’+’ and two children: ’1’ and ’2’. Given this structure,

the mathematical processor could operate on the ST without prior knowledge of how it

was constructed - result from a parsing process, generated by an algorithm or loaded

from a stream. This devision between a processor and an input generator brings a lot of

flexibility to the developers (clear separation of tasks, easy to exchange parts from the

whole and so on). There are several types of ST based on different criteria. From the

representation perspective:

• Concrete ST (CST) - directly constructed to match fully the grammar structure.

Tunnel Grammar StudioTM generates this type of trees.

• Abstract ST (AST) - containing some, not all, predefined level of detail

From the availability perspective:

• Explicit - the tree is fully constructed and available to be traversed multiple times.

This gives ability to perform more complex analysis, without the usage of additional

structures. Tunnel Grammar StudioTM generates this type of trees.

• Implicit - the tree is never constructed, but only the information for its construction

is available, usually in steps. This limits the tree usage to only one time.

Additionally the access to a ST may be:

• Functional Paradigm - the access to ST elements is by calling global functions that

receive and return basic primitive types of the used programing language.

• Object Oriented Paradigm (OOP) - the tree elements are represented by objects

that contain the data relevant to them including references to another objects.

Tunnel Grammar StudioTM generates this type of trees.

The construction of a syntax tree can be in derived in two general ways:

• Left most derivation - the tree is constructed as following the more intuitive way,

first the parent is created then the left children of it will be constructed then the

right. Tunnel Grammar StudioTM generates this type of trees.

• Right most derivation - first the right children are constructed then the left, then

the parent will be created and will add the children.

As a summary Tunnel Grammar StudioTM can produce parsers that process the input

from Left to right and generate Left most derivation (LL) syntax trees that are ex-

plicit, concrete and object oriented. The determinism can be extended arbitrary resulting

in parsers that recognize LL(*) grammars with possible backtracking for LL(k>1).

8



1.3 Grammar

A set of rules for strings in a formal language1 that describe how to form valid

expressions according to the language syntax using an alphabet2. The meaning of the

strings (for what they can be used or are they valid in a given context), however, is not

defined into the grammar, only the language syntax is. There is many notation techniques

that describe grammars as the focus is on Augmented Backus-Naur Form (ABNF).

1.3.1 Context-Free

These are grammars that their rules can be applied regardless of the previous parsed

tokens and location in the input. The context-free grammars are of a great practical

interest and many programming languages and Internet protocols are defined by such

grammars.

Tunnel Grammar StudioTM produces parsers from context-free grammars.

1.3.2 Ambiguity

One grammar is ambiguous if an input exists that can produce more then one ST.

A simple example is 1.3 - a grammar that has two equivalent rules. Every input that

is recognized by one of them will be and from the other. Because it can’t be answered

uniquely is input of ’0’ the rule ’A’ or ’B’ the grammar is said to be ambiguous. This

ambiguity may be not only between rules, but can be caused from internal rules structure.

Example 1.1: Ambiguous grammar

A = "0"

B = "0"

1.3.3 Determinism

One grammar is deterministic if at any stage of its recognition for every symbol there

is at most one action to make as in example 1.3. As a consequence every deterministic

grammar is unambiguous. Its important to note that if one grammar is not deterministic

this does not mean that its ambiguous. This is because the non-determinism can be

resolved before the input is fully processed, and the possible ST is only one per input.

Example 1.2: Deterministic grammar

A = "0" / "1"

B = "2"

1Set of words over the alphabet
2All symbols/tokens that are valid in the language
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Example 1.3: Non-deterministic unambiguous grammar

A = "0" "1" / "0" "2"

1.3.4 Recursion

More complex grammars are containing rules that are referencing each other. The

references can be of two types:

• Tree - one rule ’A’ may reference another rule ’B’, but rule ’B’ does not reference

’A’ directly or indirectly. See example 1.4. The ST generated for these grammars

are with maximum deep equal to the reference tree height.

• Graph - rule ’A’ references ’B’ and ’B’ may directly reference ’A’ or indirectly

through other rule ’C’. See example 1.5. This ST generated are with theoretically

unbounded maximum deep that depends from the input.

Example 1.4: Grammar with references as a tree

A = "0" / "1" / B / C

B = "2"

B = "3"

Example 1.5: Grammar with references as a graph

A = "0" B

B = "1" A / C

C = "2" A / "3"

Left Recursion

If one rule is referencing itself before any input token is processed, this is called a

direct left recursion as in example 1.6 for a language that recognizes input of ‘0‘ followed

by zero or more ‘1‘. Regardless of the method used for parsing, the resulted ST will be

a deep representation of rule ’A’ into ’A’ ... with a depth depending from the input.

Example 1.6: Left recursive grammar

A = "0" / A "1"

Right Recursion

If a grammar rule finishes with a reference to another rule, then a right recursion

exists as it is in example 1.7.
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Example 1.7: Right recursive grammar

A = "0" A / "1"

Tunnel Grammar StudioTM accepts any recursive grammars with exception of left recur-

sion.

1.4 Augmented Backus-Naur Form

This notation technique for context-free grammars is defined by RFC 5234[2] (Inter-

net Standard 68) and updated by RFC 7405[3] for string sensitivity. Both standards are

operational in Tunnel Grammar StudioTM for defining the Lexer and Parser grammars

with special cases, extensions and exceptions handled as define in this section.

1.4.1 Syntax

A valid document with ABNF syntax is consisting from a mixture of comments and

rules. Each comment is starting with the symbol ’;’ (0x3B or decimal 59) and continues

till the line termination symbols CRLF (two as 0xD 0xA or decimal 13 10) that is the

Internet standard new line. Each grammar rule is consisting of elements, some elements

may be containing another inside itself. With exception of the optional group every

element MAY be repeated in a range between a minimum (a number grater or equal

to zero) and a maximum (a number grater then zero, or an infinity). The strings are

surrounded by double quotes, and as of RFC 7405[3] can be sensitive or insensitive. For

the full specification please refer to RFC 5234[2], and for summary of the used definitions

from Tunnel Grammar StudioTM see bellow:

• rulename = ALPHA *(ALPHA / DIGIT / "-")

This is a string of symbols that identifies the rule name for its definition and for

its references in other rules. Note that underscore is not permitted. For how this

name participate in the generated code please see in the target language section.

Comment or white space (CWS) is not permitted in this definition.

• rule = alternation CRLF

Each rule is consisting of sub alternatives and ends in a line terminator. Addition-

ally one rule may be altered by adding additional sub alternatives by using token

”/=” instead of ”=”. Each rule definition must start at the beginning of a line.

CWS is permitted around the definitions.

• alternation = concatenation *("/" concatenation)

Each alternative element consist from sub concatenations of elements each split by

symbol ”/”. CWS is permitted around the definitions.
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• concatenation = 1*repetition

Each concatenation is a list of repetitions. CWS is permitted between the defini-

tions.

• repetition = [1*DIGIT / (*DIGIT "*" *DIGIT)] element

Each element may be repeated with a range of minimum and maximum, where

minimum can be any number, if omitted zero is assumed by default, and the maxi-

mum is a number bigger or equal then the minimum, if omitted infinity is assumed

by default. For example 2*5 is ’from two to 5 times’, and 1* is ’at least one time’

or ’from 1 to infinity’, *5 donates ’no more then 5’ or ’from zero to 5 times’, and a

star symbol alone means ’any count’ or ’from zero to infinity’. The standard does

not permit CWS between the element and the repetition group, and also between

the star delimiter and the minimum and maximum numbers, but Tunnel Grammar

StudioTM permits. This is made purely for easy to format grammars. Additionally

the standard allows zero repetitions of elements, that is considered from us for a not

well formed grammar element and is not permitted in Tunnel Grammar StudioTM.

• element = rulename / group / option / char-val / num-val / prose-val /

symbol-val / phrase-val

Each element may be one of the sub referenced types. The elements of type symbol-

val and phrase-val are not defined by the standard, but recognized by Tunnel Gram-

mar Studio because of the need to have longer Lexer tokens then single symbol, and

comfort of the user to write single symbol ranges, more detailed definitions of this

element types are later on. CWS is permitted between the definitions.

• group = "(" alternation ")"

To create sub alternatives a group element can be used. The repetition for a group

element is set to 1*1, and its not allowed to specify it or any other repetition before

the element. CWS is permitted between the definitions.

• option = "[" alternation "]"

To create elements group that MAY be existing into the input stream, this optional

group is used. The repetition for a option element is set to 0*1, and its not allowed

to specify it or any other repetition before the element. CWS is permitted between

the definitions.

• char-val = ["%s" / "%i")] %x22 *(%x20-21 / %x23-7F) %x22

The element of this type declares a string of characters surrounded by double quotes.

The double quote is not allowed inside the string. No escaping for the double quotes

is possible by the standard, and if one needs this symbol then one MUST use the

num-val definitions instead. Is the string going to be matched case sensitively (%s

prefix) or not (%i prefix), is defined before the string, if omitted, insensitive is

used by default as defined by the standard. CWS is allowed before and after the

element..

• num-val = "%" (bin-val / dec-val / hex-val)
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This is a definition of string formated by binary, decimal or hexadecimal numbers.

CWS is allowed before and after the element.

• bin-val = "b" 1*BIT [ 1*("." 1*BIT) / ("-" 1*BIT) ]

Binary representation of a string. The three types of defining this elements are: a)

%b1000001 that donates the decimal %d65 and hexadecimal %x41 with ASCII sym-

bol ’A’. b) %b1000001-1000003 that donates a range of an ASCII symbol [’A’..’C’].

c) %b1000001.1000002.1000003 that donates concatenation of 3 chars ’ABC’. The

valid value is set in range [0..0x10FFFF] to cover all Unicode symbols. CWS is

allowed after the element.

• dec-val = "d" 1*DIGIT [ 1*("." 1*DIGIT) / ("-" 1*DIGIT) ]

A decimal representation of a string. The three types of defining this elements are:

a) %d65 that donates the binary %b1000001 and hexadecimal %x41 with ASCII

symbol ’A’. b) %d65-67 that donates a range of an ASCII symbol [’A’..’C’]. c)

%d65.66.67 that donates concatenation of 3 chars ’ABC’. The valid values are set

in range [0..0x10FFFF] to cover all Unicode symbols. CWS is allowed after the

element.

• hex-val = "x" 1*HEXDIG [ 1*("." 1*HEXDIG) / ("-" 1*HEXDIG) ]

A hexadecimal representation of a string. The three types of defining this elements

are: a) %x41 that donates the binary %b1000001 and decimal %d65 with ASCII

symbol ’A’. b) %x41-43 that donates a range of an ASCII symbol [’A’..’C’]. c)

%x41.42.43 that donates concatenation of 3 chars ’ABC’. CWS is allowed after

the element. The valid value is set in range [0..0x10FFFF] to cover all Unicode

symbols..

• prose-val = "<" *(%x20-3D / %x3F-7F) ">"

Representation of a string that does not contain symbol ”<”. CWS is allowed

before or after the element.

• symbol-val = %x27 (%x20-26 / %28-7F) %x27["-" %x27 (%x20-26 / %28-7F)

%x27]

This is an extension of the standard, for defining direct symbol definition sur-

rounded by single quote plus optional range. This is a comfort for the grammar

developer, because the ABNF syntax permits ranges defined by numbers (binary,

decimal or hexadecimal), but that is hard to read code (as for example is this

symbol-val definition written up, that reads as ’single quote, then a space or visible

symbol (without the single quote), followed by a single quote’, then optionally ’dash’

followed by a space or visible symbol (without the single quote) surrounded with a

single quotes). By making the syntax extended by this element type one may simply

write: name = ’"’ (’A’-Z’ / ’a’-’z’) *(’A’-Z’ / ’a’-’z’ / ’0’-’9’) ’"’

that is far easier to read and work with then: name = %x22 (%x41-5A / %x61-7A)

*(%x41-5A / %x61-7A / %x30-39) %x22 that are essentially the same as a func-

tionality. CWS is allowed before and after the element and after the sensitivity

prefix.
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• phrase-val = "{" %x22 rulename %x22 ["," (char-val / num-val / prose-val)]

"}"

This is an extension of the standard, because of the need an element to match a

longer then single symbol token sent by the Lexer documented in a section 1.4.2.

If a simple match of a Lexer token is required, one may define A = { "word" },
that will match any ”word” type of token send by the Lexer. If one wants to match

specific content of the token, one may write A = { "word", %s "int" } to match

case sensitively the ’word’ token type with a symbol string ’int’ case sensitively.

Refer to sections 2.3 and 2.4 for the benefits this element gives in practice. CWS

is allowed around the delimiters.

• ALPHA = %x41-5A / %x61-7A

That are chars a-z and A-Z inclusive defined in hexadecimal form. Using the symbol-

val extension this could be defined as ALPHA = ’A’-’Z’ / ’a’-’Z’.

• BIT = "0" / "1"

Bit can be symbol zero or one.

• DIGIT = %x30-39

A digit is any number form zero to nine inclusive. Using the symbol-val extension

this could be defined as DIGIT = ’0’-’9’

• HEXDIGIT = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

Any digit form zero to nine plus any lower and capital letter from ’A’ till ’F’

inclusive. Note: the default char-val string is case insensitive and ”A” matches ”a”

and ”A”, but if defined as a number %d65 only ’A’ is matched.

• CRLF = %x13 %x10

Internet standard line terminator - Carriage return (CR) followed by a line feed

(LF).

An iterative solution to the recursive grammar in example 1.6 would be to refactor it

as in example 1.8. However the syntax tree will be different, regardless that the language

produced by the both grammars is the same.

Example 1.8: Simple repetition grammar

A = "0" *"1"

1.4.2 Phrases

Tunnel Grammar StudioTM is designed to use 2 grammars for producing a parsing

machine (PM). Those are Lexer and Parser grammars. The first produces tokens from

the input symbols, and a token MAY be longer then a single symbol. Because the ABNF

standard defines only direct input by single symbols we have made an extension to the
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ABNF grammar to be able to match this longer then single symbol tokens produced from

the Lexer. This effectively makes 2 levels of the input recognition (lexing and parsing)

described more in details at section 2. This simplifies the grammar definitions, speeds

up the process of recognition and MAY remove some undesired ambiguities in some

grammars.

1.4.3 End Of File

Tunnel Grammar StudioTM have spacial token send by the Lexer when the input has

finished. It can be matched in the Parser grammar with {$EOF}.

1.4.4 Epsilon Paths

The ABNF syntax permits shippable elements by defining zero for a minimum rep-

etition, referring to the parser SAP element. This effectively makes it possible to have a

rule that may be successfully recognized without any token be used from the input, as in

example 1.9.

Example 1.9: Epsilon Rule

A = 0*1 ’x’

Because a ‘rule‘ is defined to be an alternation of concatenations, the same for a

‘group‘ and ‘option‘ ABNF elements, more then one epsilon path (EP) may exists and as

a consequence more then one syntax tree can be constructed in this places. To avoid this

ambiguity, that does not result from the input directly, but from the grammar, Tunnel

Grammar StudioTM chooses one of all syntax trees possible, with optimized calculations

for faster to construct and smaller in memory syntax sub tree. For the grammar in

example 1.10 there is 2 EP possible to construct the rule ’A’: one is to use the first

alternative and have zero of ’x’ and the second is to use the second alternative by having

zero of the group ’y’ ’z’. In this case the first alternative is faster to construct and

additionally smaller in the memory and will be automatically chosen.

Example 1.10: Epsilon rule in a parser grammar

A = 0*1 ’x’ / [’y’ ’z’]

The Tunnel Grammar Studio does report with a warning the places where multiple

EP exists in the grammar, and all this places are parsed linearly (i.e. O(1)) with the

precalculated path. It is also possible to have an infinite EP, that also are O(1) parsed by

every PM, as it is in example 1.11 where it is defined an infinity of an infinity of ’x’. This is

automatically resolved by Tunnel Grammar StudioTMfor input ’y’. However, there exists

multiple representations of input ’xxy’, that will be iterated each in turn. This grammar

is not LL(1) because of the infinity of infinity of ’x’ collision, and it will be reported by

15



Tunnel Grammar Studioincluding the epsilon paths location. It is RECOMMENDED

not to have multiple paths in the parser grammar at all. The lexer grammar MAY have

any kind of epsilon paths.

Example 1.11: Epsilon rule in a parser grammar

A = *(*’x’) ’y’

1.5 Epsilon repetitions

By definition an ABNF grammar element have a range for its repetition. If this

element have an epsilon path inside itself as in example 1.12, then becomes ambiguous,

where in the repetition to place this empty recognized rules. Tunnel Grammar StudioTM

resolves internally this cases and parses them linearly (i.e. O(1)) regardless of the placing

the empty rules in the repetition list. For the example, the input of ’xxy’ will have a

single representation of the syntax tree with 2 times ’B’ with one x inside each, 3 epsilon

paths of ’B’, and ’y’ in the end. The other combinations as for example is to have EP of

’B’ one time, then 1 time ’B’ with ’x’ inside, then 2 times EP of ’B’ and then one time ’B’

with ’x’ inside, ending with ’y’. The total combinations possible are C
(
5
2

)
= 10, but only

one will be tested from the generated PM, effectively removing the ambiguity caused by

the range repetition of a EP element, in this case the rule ’B’. It is RECOMMENDED

not to have epsilon paths in the parser grammar at all. The lexer grammar MAY have

any kind of epsilon paths.

Example 1.12: Epsilon repetition

A = 2*5 B ’y’

B = 0*1 ’x’

One way to remove this ambiguity is to transform the grammar from example 1.12

into the grammar in example 1.13.

Example 1.13: Epsilon repetition refactored

A = 2*5 B ’y’

B = ’x’

16



Chapter 2

String Analyzing Pipeline

The string recognition process in Tunnel Grammar StudioTM is divided in three

main parts: Lexing, Parsing and Syntax Tree Construction (called for short Building).

A PM is created by 2 individual grammars one for the Lexer and one for the Parser.

Organizing the process as a pipeline, gives a great possibility of multi-threaded support

already available in Tunnel Grammar StudioTM and documented in section 3.6. The

String Analyzing Pipeline (SAP) elements are:

2.1 Source

This module supplies the raw bytes of the input. It can be any kind of stream:

file, memory, network socket, be generated in real-time or other. The Tunnel Grammar

Studio is generating a pure class that can be extended to any type of source, and generates

memory source (reading from a byte array) in every PM.

2.2 Decoding

There is default decoder available in each PM for ASCII character encoding and

optionally available decoders for Win1252, ISO-8859-1 (Latin1), UTF-8, UTF-16 LE/BE

and UTF-32 LE/BE. This element is organizing (decoding) the raw bytes into symbols.

2.3 Lexer

Each received token from the previous decoder pipeline element (PE) is used as a

symbol. The Lexer grammar is used to recognize phrases from the list of symbols. If

a phrase is recognized, it is transmitted to the parser as a single phrase token. If no

phrase is recognized a single symbol is transmitted as a symbol token and the remaining

symbols are again tested with the grammar rules. The Lexer grammar is with ABNF

syntax, with the following exceptions:

17



• Elements may be repeated only with minimum equal to zero or one and maximum

equal to one or infinity (this means that allowed are: ’*’ as zero to infinity; 1* as

one to infinity, 0*1 as zero one time and 1*1 that is the default value if no repeater

is present before grammar element)

• No phrase-val is allowed, because there is element before the Lexer that can send

such a token.

• No pseudo-recursion is allowed. Meaning that if A references B, it cant reference A

backward directly or indirectly.

• The system token {$EOF} can’t be used.

The grammar SHOULD recognize words and simple phrases only, and SHOULD be kept

simple and short. For a word and number splitter lexer grammar see example 2.1

Example 2.1: Simple word/number splitting Lexer grammar

WORD = 1* (’a’-’z’ / ’A’ - ’Z’)

NUMBER = 1* ’0’-’9’

The Lexer grammar rules may collide, in such a case the rule defined later in the

document have a precedence. For maximum speed of recognition the lexer grammar is

expanded into a Determined Final Automat (DFA). This expansion MAY be significant

in size if the grammar is not kept short or the ambiguities inside are too much.

2.4 Parser

The input of the SAP Parser (SAPP) Element is a token from the Lexer. The full

ABNF syntax is supported as defined in section 1.4. For maximum performance many

possible states of the parser are explicitly created, which MAY result in significant target

code size, for this reason it is RECOMMENDED to keep the grammar short and clear

of collisions. Tunnel Grammar StudioTM is implementing many analysis algorithms with

the goal to catch the runtime collisions at compile time, so the grammar developer can

design more faster running Parser grammars. If the supplied grammar is LL(k>1) then

the parser MAY backtrack. If the grammar is LL(1) then the Parser PE is expected to

run in linear to the tokens speed - O(n). For each operation the parser is performing

commands for building the syntax tree are send to the next PE.

2.5 Optimizer

This element is buffering the commands sent from the Parser PE. In case that a

backtrack is required if the Optimizer have buffered commands, this commands will be

erased and never transmitted to the Builder. This MAY provide significant speed up in

the parsing process especially (but not only) when backtrack is realized.
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2.6 Builder

The received commands from the Parser (thru the Optimizer) are used to construct

the final ST, that matches the Parser grammar as it is. In case of a backtrack, the SAP

Builder (SAPB) element adapts the tree to match the current state of the Parser.

2.7 Glue Code

After the ST is complete the client code can use it and free it when no more needed.

Glue code is OPTIONAL, but RECOMMENDED. This SHOULD be a code, written by

the client, that connects the automatically generated syntax tree source code structures

with the actual client program. For examples see section 6. This level of abstraction

brings a lot of benefits in the development process, because changes to the Parser grammar

MAY require only changes to the glue code, not to the whole client program.
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Chapter 3

Parsing Machine

The architecture of the generated PM is as a separate module inside the client

program, that requires only standard libraries of the target language to compile i.e. no

Dynamic Link Libraries or third party software is required. The design of the PM is:

3.1 Online

The generated PM processes as much as input is available. When no more input is

available the machine pauses. When more input becomes available the client code MUST

signal this to the machine so it can continue its processes.

3.2 Memory model

The PM uses fixed memory blocks (FMB) for its internal state for languages that

provide memory access with pointers (currently C++).

3.3 Run time

The machine may be run till completion: more input is need, till and error is discov-

ered in the input or till successful recognition. Additionally PM can run on small steps

as possible - this allows many single thread (ST) PM to execute in one dedicated thread

in turns.

3.4 Code diversity

Each time the PM is generated from Tunnel Grammar Studio the parser SAP element

code is randomized. This effectively makes the reverse engineering more difficult of the
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parser grammar after its compiled into an executable.

3.5 Dynamic stack

The generated Parser SAP element does not use the dedicated thread stack (DTS)

for in deep grammar execution, but creates its own dynamic stack. This ensures that

at runtime the client program is not going to collapse from missing stack space, because

of grammar recursions. Some function calls deep in the PM code MAY occur, but the

depth is independent from the grammar recursions.

3.6 Threading

One PM may be compiled to run as single or multi threaded (MT). Currently for MT

three threads are started per PM instance. Because of the dynamic stack each PM main-

tains, each thread that runs the PM can be started with very little DTS (this is valid for

multi-threaded and for single threaded client thread). Because the PM instance is called

from the client code, and the PM does some system calls (as at least to allocate mem-

ory), its not possible to calculate in advance the maximum DTS size needed. However,

because no in deep recursion is going to happen on DTS, a client program MAY shrink

the parsing threads stack significantly. This brings high scalability (because a default

TDS is usually in megabytes) in case of the parsing is used in a server application.
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Chapter 4

Studio

Tunnel Grammar StudioTM has a compiler build in for ABNF to a Target source

code (TSC), currently C++. There are two main tabs in the Graphical User Interface

(GUI) that contain code editors for the Lexer and Parser grammars with ABNF syntax

with exceptions, spacial cases and extensions defined in sections 1.4 and 2.

4.1 System Requirements

The Tunnel Grammar Studio runs currently in Windows XP, 7 and 10. The GUI uses

OpenGL with minimum supported version 2.0 with minimum of 128MB video memory.

At runtime, depending from the grammar the video memory requirements MAY grow.

The runtime memory need is minimum 32 MB, but at compile time the memory required

MAY grow significantly based on the supplied grammars. Hard disk space required for

the moment is less then 10 MB.

4.2 Installation

The Tunnel Grammar StudioTM is a standalone application with a single executable

file and an eventually accompanying license file. Every registered user after a successfully

completed purchase of a license, may download its files from the website in its user page.

Every executable file is accompanied by a hash SHA-256 code on the file bytes.

4.3 Lexer

The first tab in GUI is editor for the Lexer Grammar, that will be compiled as

the Lexer SAP element as defined in section 2.3. At compilation time first the syntax

errors are checked, then an analysis is made to detect references to missing rules, invalid

repetition ranges and rules recognition collisions. All found errors and warnings, plus all
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messages are logged into the GUI log list. For the error codes (EC) description refer to

section 4.9.

4.4 Parser

The second tab in the GUI is an editor for the Parser Grammar, that will be compiled

as the Parser SAP element as defined in section 2.4. At compile time, after the syntax

is checked, complex analysis are initiated to detect LL(k>1) collisions. All found errors

and warnings plus additional relevant messages are logged into the GUI log list. For the

EC description refer to section 4.9.

4.5 View

This tab contains the graphical representation of different graphs and relations of the

PM. Currently each lexer and parser grammar can be visualized as an automat. Color

options for some parts of the graphics can be found the Main Menu/Studio/Options.

4.6 Debug

The Tunnel Grammar StudioTM have a build in virtual parsing machine (VPM)

debug engine. It can be used to step by step process an input of characters and understand

better the interaction of the lexer and parser grammars. The fast/slow forward/backward

processing executes the VPM in the choosen direction and speed and stops at any error

(the parsing have to backtrack) or a success (a valid parse tree was found for the given

input).

The debugging can help the development of the grammars significantly, because the

developers may try different inputs to find and see the resulting parse tree, and compare

it to their expectations.

4.6.1 Loading

In loading screen of the debugger, the start parse rule must be supplied and must

be one of the rules in the parser grammar. The second piece of information is the input,

that will be used from the virtual parsing machine in the time of debugging. The input

is represented by UTF-32 chars. The loading screen is shown in figure 4.1.

4.6.2 Debugging

After successful loading the VPM can be runned in steps forward and backward. A

result of running the mathematical expression use case (in section ) with the input ”2+x”
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Figure 4.1: Tunnel Grammar Studio Debugger - Loading

gives the first successful parsing as shown in figure 4.2.

Figure 4.2: Tunnel Grammar Studio Debugger - Loading

• Controls - In the top left corner of figure 4.2 are the controls. From left to right the

buttons are: fast backwards, slow backwards, single step backwards; forward single

step, forward slowly, forward fast; pause if running slow or fast in any direction and

stop button that will close the debugger.

• Input View - Contains the single Unicode characters that are read from the stream.

Its the area marked with box 1 in figure 4.2.

• Tokens View - Holds the recognized tokens by the lexer grammar from the input

characters. Its the area marked with box 2 in figure 4.2.

24



• Stack View - Lists the current stack items in the process of the VMP runtime.

Its the area marked with box 3 in figure 4.2 and its empty because the input was

completely consumed and currently the parser is not in any rule.

• Parser Tree View - Displays the current concrete parse tree in the current VMP

runtime. It is dynamically updated at every step that affects the tree. All the

tokens can be seen in the tree left to right as leafs. Its the area marked with box 4

in figure 4.2.

4.7 Main Menu

The Tunnel Grammar StudioTM Main Menu follows this structure:

4.7.1 File

For everything related to the project file as in figure 4.3.

Figure 4.3: Tunnel Grammar Studio/Main Menu/File

• New - clear all project data: lexer and parser editors and the project options.

• Open - open an existing project file.

• Save - save the current project to a file.

• Save As - save the current project to a new file, without changing the current opened

file.

• Exit - closes the program after all changes to the project are saved or discarded.

4.7.2 Project

Contains all project options and operations as in figure 4.4.

• Options - all project options organized in tabs.

� General - overall setup for the project showed in figure 4.5. The fields are:
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Figure 4.4: Tunnel Grammar Studio/Main Menu/Project

Figure 4.5: Tunnel Grammar StudioProject Options - General Tab

∗ Directory - this is the directory where the compiled target language files

will be placed. Sub folders MAY be created. It is NOT RECOMMENDED

to store any other files in this folder, but the compiled, because future ver-

sion MAY save files with different names and WILL overwrite the existing.

∗ Title - short descriptive name of the PM (for example ’Language v5’).

∗ Namespace - this is the namespace the source code will be generated to

use. If empty, that is NOT RECOMMENDED, no namespace is generated

and the code uses the global namespace.

∗ Classes prefix - for every parser grammar rule will be generated an object,

and each of this objects will have name prefix as in this field.

∗ File Name prefix - every generated file name will be prefixed for easy
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recognition of the files when included in a target language project. MAY

be empty, then no common prefix of the files will be used.

� Input - the switches for having specific input decoders available in the compiled

PM, showed in figure 4.6. More details about the decoders are in section 5.3.

Figure 4.6: Tunnel Grammar StudioProject Options - Input Tab

� Lexer - Options related to the generated SAP lexer element showed in figure

4.7. The fields are:

∗ Max token unicode length - the maximum length of a phrase recognized

by the lexer. Valid range is [1..224].

∗ Max blocks - maximum memory blocks to use. This is a soft limit any

may be extended from the lexer if need (for example longer phrases are

recognized).

∗ States - defines the automat states generation method. Currently only full

expansion is available as defined in section 2.3.

∗ Precedence - defines what lexer rule to be with a higher priority in case

of a collision i.e. what token type will be returned if more then one rule

can recognize the current input sequence. Currently the latest defined is

the only option.

∗ Overwrite warning - should a warning be printed in the log in case of a

lexer rules collision. A collision here means that two or more lexer rules
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Figure 4.7: Tunnel Grammar StudioProject Options - Lexer Tab

have the same final automata state.

� Parser - options related to the SAPP element.

∗ Max look ahead tokens - defines how much tokens maximum the SAP

parser element MAY search for a recognition before terminates with an

error. If this field is left empty, an infinity is assumed: LL(*). However,

for grammars that are LL(k>1) this MAY result to a worse then linear

runtime per input token. The amount of tokens that are kept in the

memory is at least this value.

∗ Max obsolete tokens - this is the amount of tokens that will be kept in the

PM internal structures. At any time after this threshold + the -max look

ahead tokens- is reached the obsolete tokens MAY be discarded.

∗ Max trash blocks - the amount of unused dynamic stack memory blocks

that will be freed at ones after so much are available.

∗ Max optimizer log blocks - the amount of blocks that will be kept available

for an optimization.

∗ Max optimizer flush blocks - the RECOMMENDED amount of ready

blocks that will be send to the SAPB.

∗ Halt on first success - if turned ’on’ then the parser will stop the parsing

after the first successful input recognition. If turned ’off’ the parser will
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Figure 4.8: Tunnel Grammar StudioProject Options - Parser Tab

signal the success and backtrack to search for more successful combina-

tions.

∗ Halt on first error - if turned ’on’ the parser will stop on the first error

found. If turned ’off’ the parser will signal the errors found and will

backtrack to search for a success combination.

∗ Right recursion warning - if one or more rules are part of a right recursion

a warning will be printed.

� Builder - options related to the SAPB element.

∗ Architect Type - there are 5 architect types available.

· None - the architect is missing, and no tree information will be gen-

erated. The parser with this architect type will only check for a valid

input.

· Concrete Statically Typed - this architect will construct a concrete

statically typed syntax tree. This tree have a separate classes for each

rule, group, alternative and concatenation from the whole grammar.

Each repetition is represented by an array of elements, and if the

minimum and maximum repetitions are not the same from a template

list class for the repetable ABNF element.

· Concrete Visitor - an architect that is only receiving the commands
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Figure 4.9: Tunnel Grammar StudioProject Options - Builder Tab

for constructing the concrete syntax tree as a visitor pattern. By using

this architect type, one can construct a custom concrete tree.

· Abstract Dynamically Typed - this architect constructs a dynamically

typed abstract syntax tree. This tree have a generic class of ’Node’

that represents every rule, group and alternative. Each concatenation

is represented by a sub node linked list. This tree suports runtime

automatic optimization of nodes with one child, thus many different

abstractions of the tree are possible.

· Abstract Visitor - an architect that is only receiving the commands for

constructing the abstract syntax tree as a visitor pattern. By using

this architect type, one can construct a custom abstract tree.

∗ Destructor with dynamic stack - when the PM is destructed, it destructs

any ST available. If this option is turned ’on’ the dynamic memory is used

to destruct the syntax tree. If turned ’off’ that is NOT RECOMMENDED

the thread dedicated stack is used for in depth tree elements destruction.

∗ Traverse Iterative - this option, give to the generated parser classes and

functions to iterate the constructed tree (concrete or abstract) in an it-

erative manner (dynamic memory is used for in depth traversal of the

elements, its expected to be slower then the recursive, but stack overflow

is not likely). A visitor pattern is used.
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∗ Traverse Recursive - this option, give to the generated parser classes and

functions to iterate the constructed tree (concrete or abstract) in a recur-

sive manner (the thread dedicated stack/call stack is used for in depth

traversal, its expected to be faster then the iterative traversal, but for

very depth trees a stack overflow MAY occure easiliy). A visitor pattern

is used.

∗ ToString Iterative - iterative to string conversion from a tree element (con-

crete or abstract). Additionally a function ToArray will be available to

convert the element to a character array and its length. Note: the resulted

array is NOT zero terminated, but length terminated, because the PM can

parse and the zero Unicode code point.

∗ ToString Recursive - a recursive to string conversion for a tree element

(concrete or abstract). Additionally a function ToArray will be available

to convert the element to a character array and its length. Note: the

resulted array is NOT zero terminated, but length terminated, because

the PM can parse and the zero Unicode code point.

∗ ’Expected’ on error - when an error is received at runtime of the PM on

a given input, if this option is turned ’on’ and the error found is because

of a not recognized token, then a summary list of all possible tokens and

rules expected in this location is available.

∗ ’Expected’ search mode - the algorithm used to collect the possible to

recognize tokens at given location. Available is ’current stack iteration’

mode that will scan the runtime stack at the time of the error and return

a summary of the expected tokens. Its complexity is O(n) where ’n’ is the

stack depth.

∗ ’Found’ on error - if turned ’on’ when an syntax error is received it contains

information about the current token recognized by the lexer that is not

valid in the current parsing location.

� Machine - global machine options.

∗ Threading - single or multi threaded code to be generated. Currently the

threading is available only for Microsoft Windows.

∗ Chained Execution (Parser, Lexer, Builder) - each module executes it-

erativly, regardless of the single or multihread option. Each iteration is

executing as little as possible operations. This makes the loop of the itera-

tions costly. To mitagate the effect, more operations may be executed per

iteration step. Each chain execution value represent how much operation

steps per iteration to execute each module (at maximum) per iteration

step.

∗ Lexer In Parser - for grammars that have 1 token of look ahead i.e. LL(1),

and this option enabled, the generated parser will have a single SAP mod-

ule - the combination of the lexer and the parser modules. This makes
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Figure 4.10: Tunnel Grammar StudioProject Options - Machine Tab

the transport of tokens to the parser more efficient and faster parsing is

expected. As a consequence in a multi threaded parsers one less thread

will be created.

∗ Builder In Parser - this makes the SAP modules bulder and parser into one

SAP module. If this option is enabled, the optimizer module is removed

and the commands for the construction of the syntax tree are directly used

from the architect. This option is usefull for parsers with 1 look ahead

symbol i.e. LL(1), because, there will no backtracking will occure during

the parsing and the optimizer is not need. The optimizer have and other

functionality, to group the syntax tree construction commands and send

them in groups to the builder. If multithreaded parsing is used and the

syntax tree is consisting of classes with many fields (large grammars), then

this option MAY be better let OFF. As a consequence of this option is

’ON’ in a multi threaded parsers one less thread will be created.

∗ Block byte size - the size of the block that is used across the whole PM.

∗ Lexer to Parser blocks - the RECOMMENDED amount of blocks with

tokens that will be transfered at ones from the lexer to the parser.

∗ Parser to Builder blocks - the RECOMMENDED amount of blocks with

ST commands that will be transfered from the parser (specifically the

Optimizer) to the ST Builder.
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∗ Byte Offset - the location structure contains byte offset from the input

stream start.

∗ CodePoint Offset - the location structure contains Unicode code point

offset from the input start.

∗ Line/Char Offset - the location structure contains Line and Unicode Char-

acter offset in this line from the input start. Note: this is not a column

but a character offset i.e. tab symbols are counted as one.

∗ Tree elements locations - should the rules and groups have start and fi-

nal input location information. The location information is described in

section 5.6.

� Code - global generated source code options.

Figure 4.11: Tunnel Grammar StudioProject Options - Code Tab

∗ Machine - if turned ’on’ this option will make the generated parser to have

a demo PM generated in a separate source file.

∗ Messages Trave - this option controls the messages emitted from the demo

parsing machine, in each event (as the syntax tree commands for example).

∗ Messages System - option to control the system messages related to the

PM execution in the demo PM.

∗ Performance Monitor - generate code that measures the runtime of the

different PM functionalities (parsing, iteration, to string and destruction)
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and prints the results.

∗ Test Cases - generate test cases for the parser. The demo PM will auto-

matically load the generated test cases and execute them. Positive (tests

that must succsseed) and Negative (test that must fail) test cases are

generated.

• Check Lexer - checking of the lexer grammar by itself for syntax or semantic errors.

• Check Parser - checking of the parser grammar by itself for syntax or semantic

errors.

• Check Parser - checking of the parser and lexer grammars alone and a in combina-

tion for syntax or semantic errors.

• Compile - compile the PM based on the lexer and parser grammars with the chosen

project options.

4.7.3 View

Menu for visualization of the lexer and parser grammars in figure 4.12.

Figure 4.12: Tunnel Grammar Studio/Main Menu/View

• Lexer Layout - load the lexer grammar automat layout into the view tab.

• Parser layout - load the parser grammar automat layout into the view tab.

4.7.4 Studio

Related to the Tunnel Grammar StudioTM options and operations.

Figure 4.13: Tunnel Grammar Studio/Main Menu/Studio

• Options - related to the Studio Options as in figure 4.14.
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Figure 4.14: Tunnel Grammar Studio/Main Menu/Studio/Options

• About - information about the Tunnel Grammar StudioTM currently running in-

stance.

• License - information about the license related to the currently running Tunnel

Grammar StudioTM program instance.

• Colors of Code Editors - list of colors that apply to the code editors (lexer and

parser grammars as well as the debugger input) in the interface.

– Background - the background color of the code editors. Default is black:

rgba(0, 0, 0, 255).

– Font Active - the font color when the code editor is active for input. Default

is white: rgba(255, 255, 255, 255).

– Font Active Selected - the character font color when it is selected. Default is

white: rgba(255, 255, 255, 255).

– Font Inactive - the font color of not selected characters when the editor is not

active. Defaults to white: rgba(255, 255, 255, 255).
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– Font Inactive Selected - the font color of a selected character when the editor

is not active for keyboard input. Defaults to near white: rgba(229, 229, 229,

255).

– Cursor - the color of the cursor in the code editor. Defaults to white: rgba(255,

255, 255, 255).

– Back Active - the background color of a character when it is not selected and

the editor is active for a keyboard input. Defaults to a transparent color:

rgba(0, 0, 0, 0).

– Back Active Selected - the background color of a character when it is selected

and when the code editor is active for a keyboard input. Defaults to white:

rgba(255, 255, 255, 255).

– Back Inactive - the background color of a character when it is not selected and

the editor is not active for a keyboard input. Defaults to a transparent color:

rgba(0, 0, 0, 0).

– Back Inactive Selected - the background color of a character when it is selected

and the editor is not active for a keyboard input. Defaults to a gray-blue color:

rgba(127, 127, 252, 255).

• Colors of view

– Background - the background color of the graphical components of the GUI.

As for example the ’View’ tab content and the Debugger visualization compo-

nents. Defaults to rgba(64, 64, 64, 255).

– Lines - the color of the lines and borders of the drawn graphical primitives

around the GUI. Defaults to rgba(192, 192, 192, 255).

The users with active support may check is there newer version then the currently used

in Main Menu/About/Update Check.

4.8 Practical limitations

There is various practical limitations that a developer is not expected or advised to

reach.

Compile time:

• Rule name length - current maximum is set to 128 symbols.

• Rule names complexity - current maximum of the internal automat states is set to

216 = 65536.

• Rules per grammar - current maximum is set to 128 rules.

• Phrase value length - current maximum is set to 128 rules.
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• Phrase values complexity - current maximum of the internal automat states is set

to 216 = 65536.

• Nested level - current maximum is set to 32 groups.

• Repetitions - currently the maximum defined integer repetition of an element is set

to 232− 1 = 4294967295. Note that smaller values result to a less memory usage at

PM runtime and that the infinity repetition is not bounded.

• NFA complexity - the first stage of the lexer grammar compilation involves a NFA

construction. The maximum states limit is set to 214 = 16384.

• DFA complexity - the second stage of the lexer grammar compilation is creation

of a DFA from the NFA created at the first stage. This involves expansion of all

possible NFA states. The combinations may grow significantly if the grammar is

too ambiguous. The maximum states limit is set to 216 = 65536.

Run time:

• Runtime maximum token length in chars - currently allowed is 224 − 1 = 16777215

Unicode characters. The actual bytes accumulated MAY be more depending from

the encoding and in case of 4 bytes per encoded char, it is 226 − 4 of maximum

stream byte length per token. However, its RECOMMENDED to use small values

in range [32..256] set in the project options.

The values in this section are lowered for the demo version of the product. Additionally

the versions MAY have other limitations.

4.9 Message Codes

100 Reference to undefined rule.

101 Phrases are not allowed in this grammar.

102 Invalid element repetition range.

200 Integer number epsilon paths - there exists more then one, but finite epsilon paths.

201 Infinite epsilon paths.

300 Follow collision for a character symbol.

301 Follow collision for a sensitive phrase with another sensitive, insensitive or general

phrase from the same token type.

302 Follow collision for an insensitive phrase with another insensitive or general phrase

from the same token type.

303 Follow collision for a general phrases from the same token type.

304 Follow collision for EOF system tokens.

400 Direct left recursion.
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401 Indirect left recursion.

500 First/First collision for a same character symbol.

501 First/First collision for a sensitive phrase with another sensitive, insensitive or a

general phrase from the same token type.

502 First/First collision for an insensitive phrase with another insensitive or general

phrase from the same token type.

503 First/First collision for a general phrases from the same token type.

504 First/First collision for an EOF system token.

505 Dangling element right.

506 Direct right recursion.

507 Indirect right recursion.

600 The phrase values in the grammar are too complex.

700 The rule names in the grammar are too complex.

800 Syntax error in the grammar.

900 Too much rules.

901 Rule name too long.

902 Zero repetition not allowed.

903 Not allowed integer minimum repetition.

904 Not allowed integer maximum repetition.

905 In the repetition defined the minimum is bigger then the maximum.

906 Group nested level too deep.

907 Optional groups don’t support explicit prefix repetition definition.

908 Phrase name too long.

909 Phrase value is too long.

910 Phrase values does not support ranges.

911 Value too big.

912 EOF systen token don’t support explicit prefix repetition definition.

913 Range value start is bigger or equal to the final value.

1000 Unable to prepare the ABNF parser.

1001 ABNF Parser runtime error.

1002 Invalid result ABNF parser state.

1003 Missing ABNF syntax tree.
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1100 Invalid NDFA minimum repetition.

1101 Invalid NDFA maximum repetition.

1102 Phrases are not allowed in this grammar.

1103 Recursion is not allowed in this grammar.

1104 The NDFA automat is too big.

1200 Too many DFA to NDFA simulator states.

1201 Rule overwrite. More then one rule can recognize an input.
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Chapter 5

Target C++

For 2 valid grammars, one for the SAP Lexer and one for SAP Parser elements, a

self sustaining PM is generated. The target directory of the files and the options can be

changed before compilation in MainMenu/Parser/Options. The compilation is execute

with F9 keyboard button or from MainMenu/Parser/Compile.

5.1 Stream Reader

The compiled machines that have source decoders are having a class with a name

stream reader. This class have one pure virtual function with a name Read that MUST

be overwritten by the class extension. The full declaration of the function is virtual

READ STATUS Read(uint8 *data, uint data length, uint *read length)=0; where

READ STATUS is one of:

• RS OK - indicates that at least one byte has been written into the data, and the

total read length must be returned in argument ’read length’.

• RS BUSY - indicates that the stream is busy and the machine must stop, till more

data become available. When that data is available, the PM must be prepared and

run again.

• RS END - the stream end was reached and no data is/will be available.

• RS FAIL - there is a stream error, and the PM must stop.

5.2 Read Buffer

The compiled machines that have source decoders are having a class with a name

source buffer. This class receives a pointer of stream reader at its compile time,

that uses in its lifetime (t.e. the stream reader MUST not be destructed before the

source buffer is). All decoders are using this buffer for fast decoding of the stream.
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5.3 Source Decoders

Every PM may contain a set of source decoders, chosen in the project options.

5.3.1 ASCII

If compiled in PM, a class with a name source ascii is available. Accepts bytes that

directly map to an ASCII char. All other byte are substituted with the error Unicode

char 0xFFFD.

5.3.2 ISO-8859-1

If compiled in PM, a class with a name source iso88591 is available. Directly maps

every byte to an Unicode character. Other popular name of this decoder is Latin1.

5.3.3 Win 1252

If compiled in PM, a class with a name source win1252 is available. Accepts bytes

that are valid in Win 1252 code page. All other byte are substituted with the error

Unicode char 0xFFFD.

5.3.4 UTF-8

If compiled in PM, a class with a name source utf8 is available. Accepts Unicode

UTF-8 encoded stream. All invalid byte sequences are replaced with the error Unicode

char 0xFFFD.

5.3.5 UTF-16LE

If compiled in PM, a class with a name source utf16le is available. Accepts Uni-

code UTF-16LE encoded stream. All invalid byte sequences are replaced with the error

Unicode char 0xFFFD.

5.3.6 UTF-16BE

If compiled in PM, a class with a name source utf16be is available. Accepts Uni-

code UTF-16BE encoded stream. All invalid byte sequences are replaced with the error

Unicode char 0xFFFD.
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5.3.7 UTF-32LE

If compiled in PM, a class with a name source utf32le is available. Accepts Uni-

code UTF-32LE encoded stream. All invalid byte sequences are replaced with the error

Unicode char 0xFFFD.

5.3.8 UTF-32BE

If compiled in PM, a class with a name source utf32be is available. Accepts Uni-

code UTF-32BE encoded stream. All invalid byte sequences are replaced with the error

Unicode char 0xFFFD.

5.3.9 Universal

If compiled in PM, the class named source universal will be available. It accepts

a default encoding argument in its constructor. It scans the first bytes of the stream

and automatically determines the encoding. The check is only for the currently compiled

Unicode source decoders. If a match is found, the further processing is redirected to the

found decoder. If no match is found the default encoding supplied at class construction

time is used.

5.4 Location

Every compiled PM have a class with a name location. It contains variables (and

functions for their retrieval) holding information about a location in the input stream.

• uint32 GetByte() - the input stream byte offset where the error occurred or

uint32(-1) if the byte offset is not compiled into the PM.

• uint32 GetCodePoint() - returns the Unicode code point offset where the error

occurred or uint32(-1) if the Unicode code point is not compiled into the PM.

• uint32 GetLine() - returns the text line zero based index where the error occurred

or uint32(-1) if the text line/char is not compiled into the PM.

• uint32 GetChar() - returns the text current line char (not column) zero based

index where the error occurred or uint32(-1) if the text line/char is not compiled

into the PM.

5.5 Events

Every compiled machine have a class with a name events. This class MUST be

supplied in the machine constructor, and MUST NOT be deleted till the machine de-
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struction. The current functions that MAY be overwritten in user defined extensions of

this class are:

• void OnDone(void) - function called when the input was successfully recognised

and there is a syntax tree constructed.

• bool OnSyntaxError(const syntax error &) - this function is called from the

Builder element (that may be in its own thread in case of MT PM) and contains

information about an error that occurred. The function must return true if the

machine must stop its execution after this error, and false if the machine will

continue to search more for a valid ST.

• void OnExplored(void) - this function is called, when all possible combinations

(related to the maximum look ahead tokens) were tested and no recognition was

found.

One may create an extension of this class for file logging and another extension for GUI

presentation of the client program, and switch them depending from the needs.

5.6 Syntax Error

Every instance of PM have a class with a name syntax error. This function have

a location information and optionally, if compiled, list of the expected items (rules or

tokens) at the error location. Internals:

• const location &Location() - returns the location object holding information

where is the error in the stream.

• struct item - holds a pointer for one expected item, and a pointer to the next

item structure, forming a list. The last item in the list have next set to NULL.

Available only if compiled in the PM.

• const item *First() - returns the first item structure, available only if compiled

in the PM.

There are several types that MAY be available in the expected list. To determine which

of this types is received one MUST check the return value of the Type function of the

class instance.

• expect rule - having a Type return value of T RULE. Contains a public variable

const char *Name that is the expected rule name.

• expect char - having a Type return value of T CHAR. Contains a public variable

uchar Value that is the expected Unicode char.

• expect range - having a Type return value of T RANGE. Contains a public vari-

ables uchar From, To that is the expected Unicode char range inclusive.

• expect string - having a Type return value of T STRING. Contains a public

variable const uchar *Value that is the Unicode character array expected, uint

Length that is the expected character array length in chars (the array is not zero
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terminated) and a variable bool CaseSensitive specifying is this string expected

in a case sensitive manner.

• expect phrase any - having a Type return value of T PHRASE ANY. Contains a

public variable const char *Name that is the expected lexer phrase name

• expect phrase value - having a Type return value of T PHRASE ANY. Contains

a public variable const char *Name that is the expected lexer phrase name, const

uchar *Value - an array of the expected phrase content, uint Length - the length

in chars of the ’Value’ variable (the array is not zero terminated) and a variable

bool CaseSensitive specifying is this phrase value expected in a case sensitive

manner.

• expect eof - having a Type return value of T EOF. Indicates that end of the

stream was expected.

5.7 Parsing Machine

The PM is represented by an object with a class name machine. The functions

defined in it are:

• uint Prepare(void) - called at the beginning of the stream processing. That may

be at the first processing start or if the stream bytes were not available fully and

the parsing was interrupted because of it, to signal continuation of the processing

because new bytes become available. Returns E OK on success and other value on

fail.

• uint RunMT(uint32 TimeOut) - monitor the PM execution for a specific amount

of time, or if uint32(-1) is used for the TimeOut argument, then the monitoring is

executed till PM completion, then the control of the caller is restored i.e. this is a

blocking function call. Returns E OK if the machine did not complete in the given

time interval, E DONE if the machine completed its execution and other value

for an error.

• uint RunST(uint32 Iterations) - execute some amount of steps of the parsing.

If uint32(-1) is supplied, the machine executes till completion. Returns E OK value

if the machine did not complete in the requested steps, E DONE status code if the

machine completed its execution and other value for an error.

• uint Interrupt(void) - signal a stop to the multi threaded machine execution.

It can be called from any thread, and will result with an error return value for

the thread that currently executes RunMT function. Returns E OK on success, or

other value for an error.

• MACHINE STATUS GetState(state vector &) - this function returns the current

status of the PM with additional state vector argument for internal state values.

The return value is one of:

– MS WORKING - the machine is still working.
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– MS NEED INPUT - the machine does not work, because more input is need.

– MS COMPLETE - the machine has completed successfully.

– MS ERROR - an error has occurred during the execution, and the respective

functions were called (as for example ’OnSyntaxError’).

– MS FATAL: a fatal error occurred during the execution. The state vector

argument contains error codes for the different SAP elements. That is a system

fatal error that may be generated for example in MT PM where an exception

was thrown because no memory was available.

– MS INCOSISTENCY: the internal structures of the PM are having inconsis-

tent values. This MUST NOT occur in practice, and MAY be a result from a

memory corruption in the client program that changed the PM state.

• basic *GetResult(void) - returns the current syntax tree abstract root element,

or NULL if no tree is available.

• bool GetResult(%rule class name% **) - one function per parser grammar rule,

that returns into its single argument a pointer to the syntax tree root object, if the

class types match, returns true as a result. If no ST root element is available false

is returned. The object remains referenced by the PM and will be deleted by its

destructor.

5.8 Files

Each generated file is named based on the PM options specified (used later as a

reference %FileNamePrefix%). In the target directory, the following structure will be

generated on compile time:

• %FileNamePrefix%system bridge.h - this file, placed in the root directory of the

generation, is connecting the parser code, to the client language types definitions

and included headers. A file with a name %FileNamePrefix%system bridge.h is

generated at every compilation if does not yet exists. The client MAY edit the file

with its own definitions and include custom headers.

• kernel - folder that contains general files needed for the execution of the PM, but

not directly grammars related. Items inside:

– %FileNamePrefix%system kernel.h - this file contains the parser object class.

– %FileNamePrefix%system kernel.cpp

• parser - folder that contains the SAP elements source code. Items inside:

– %FileNamePrefix%system parser.h

– %FileNamePrefix%system parser.cpp

• tree - the syntax tree object oriented source code one ’cpp’ and one ’h’ file per

parser rule. Items inside (where %rule name% defines each rule name in turn):
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– %FileNamePrefix%tree %rule name%.h

– %FileNamePrefix%tree %rule name%.cpp

Each rule have its own file, for the reason the developer to include only the relevant

files into the glue code. Then the compilation of the full client project is expected

to be faster in long term.

For bigger grammars some compilers may not be able to compile the files generated,

because they MAY be too big. The user MAY expect different files organization in the

future versions, that will split the compiled code into more files.

5.9 Classes

All the code is generated inside the chosen name space, and each class name is

prefixed by the chosen class name prefix (used later as %ClassNamePrefix%) both from

the parser options. Because C++ class names are not allowed to contain a dash symbol,

but ABNF grammars have it in the rule name, but don’t have underscore and are case

insensitive, all class names are generated with lower case and every dash is substituted

with an underscore. As for example, the parser grammar rule with a name ’Document-

Root’ will generate a class name %ClassNamePrefix%document root.

5.10 Threading

Currently the threading and synchronization is implemented for Microsoft Windows

Operation System, by including ”windows.h” header file and calling directly the API. For

single threaded files, the header file is not included and as a consequence the generated

code is expected to be not operation system dependent.

5.11 ToString

The Tunnel Grammar StudioTM have the option to collect all sub tokens symbols, of

the ST generated objects, into a list. This makes easy the development of the glue code,

because the developer MAY NOT specifically write code for rules or groups but extract

their symbols in a Unicode char array.

5.12 Errors

The parsing errors of running PM are reported by calling the PM events class func-

tions OnSyntaxError and OnExplored documented earlier in the document. It is REC-

OMMENDED to extend the PM events class and overwrite the functions for receiving

the error reporting.
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5.13 Memory

The SAP elements operate with blocks of raw memory allocated and freed by a

shared memory manager (MM) object. This gives great runtime performance, because

the data can be freely moved between the SAP elements and the very efficient memory

pooling technique can be used. In case of a multi threaded PM the MM object access is

synchronized and thread safe.

5.14 Using the parsing machine

In the following section many different examples and use cases are described. For

full source code of this example please visit the company web page. The examples in this

section are having no lexer grammar, but only a parser grammar as in 5.1.

Example 5.1: Integer list parser grammar

list = integer *("," integer)

integer = 1* ’0’-’9’

5.14.1 Beginner

The ”just give me the syntax tree” is the following example. Full source code and

a demo can be found at https://www.experasoft.com/en/products/grammarstudio/

examples/. The example parses any grammar that have ’list’ root rule. The compile

options are: namespace ’demo’, files prefix ’demo ’. This example demonstrates parsing

machine prepare, run, check result and a syntax tree retrieval.

1 // inc lude system headers

2 #inc lude <iostream>

3 #inc lude <conio>

4

5 // inc lude the t r e e root

6 #inc lude ” demo system parser . h”

7

8 // d e f i n e e x p l i c i t l y the namespace

9 namespace demo01

10 {
11

12 // prepare , run and check the par s ing machine complet ion

13 // s t a t u s ; r e tu rn s ’ t rue ’ on s u c c e s s and ’ f a l s e ’ o f an

14 // e r r o r occured in which case an e r r o r message i s pr in ted

15 s t a t i c bool Execute ( machine &m)

16 {
17 // prepare the machine f o r running

18 {
19 u i n t s t a t u s = m. Prepare ( ) ;

20 switch ( s t a t u s )

21 {
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22 case E OK: break ; // the preparat ion was s u c c e s s f u l l

23

24 d e f a u l t :

25 {
26 // f a i l e d to prepare the machine , p r i n t the e r r o r code

27 std : : p r i n t f ( ”ERROR: Preparat ion e r r o r 0x%08X.\n” , s t a t u s ) ;

28 re turn f a l s e ;

29 }
30 }
31 }
32

33 // run the machine t i l l complet ion ( s u c c e s s or an e r r o r )

34 {
35 u i n t s t a t u s = m. RunST(−1) ;

36 switch ( s t a t u s )

37 {
38 case E DONE: break ; // the running was s u c c e s s f u l l y

39

40 d e f a u l t :

41 {
42 // there i s a runtime e r r o r

43 std : : p r i n t f ( ”ERROR: Runtime e r r o r 0x%08X.\n” , s t a t u s ) ;

44 re turn f a l s e ;

45 }
46 }
47 }
48

49 // check the s t a t u s o f the c o r r e c t machine run

50 {
51 s t a t e v e c t o r sv ;

52 MACHINE STATUS s t a t u s = m. GetState ( sv ) ;

53 switch ( s t a t u s )

54 {
55 // a v a l i d syntax t r e e was cons t ruc ted

56 case MS COMPLETE:

57 break ;

58

59 // d i f f e r e n t no f u l l syntax t r e e cons t ruc ted ca s e s

60 case MS WORKING :

61 std : : p r i n t f ( ”ERROR: I n v a l i d working s t a t e .\n” ) ;

62 re turn f a l s e ;

63 case MS NEED INPUT:

64 std : : p r i n t f ( ”ERROR: Completed with a reque s t f o r more input .\n” ) ;

65 re turn f a l s e ;

66 case MS ERROR:

67 std : : p r i n t f ( ”ERROR: Completed with a syntax e r r o r .\n” ) ;

68 re turn f a l s e ;

69 case MS FATAL:

70 std : : p r i n t f ( ”ERROR: Completed with a f a t a l e r r o r .\n” ) ;

71 re turn f a l s e ;

72 case MS INCONSISTENCY:

73 std : : p r i n t f ( ”ERROR: Completed with an i n c o n s i s t e n c y s t a t e .\n” ) ;

74 re turn f a l s e ;

75 d e f a u l t :
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76 std : : p r i n t f ( ”ERROR: Completed with an unknown s t a t e 0x%08X.\n” ,

↪→ s t a t u s ) ;

77 re turn f a l s e ;

78 }
79 }
80

81 // having a syntax t r e e

82 re turn true ;

83 }
84

85 // par s ing o f a byte array

86 s t a t i c void ParseBytes ( const u in t8 ∗ input , u i n t l ength )

87 {
88 // c r e a t e a memory reader stream ob j e c t

89 stream reader memory Reader ( input , l ength ) ;

90

91 // c r e a t e a read b u f f e r ob j e c t f o r t h i s stream

92 s o u r c e b u f f e r Buf f e r (&Reader , 4096) ;

93

94 // use the b u f f e r as ASCII

95 s o u r c e a s c i i Decoder(&Buf f e r ) ;

96

97 // c r e a t e the c l a s s that w i l l r e c e i v e e r r o r / s u c c e s s

98 // message when the par s ing machine runs

99 events Events ;

100

101 // c r e a t e a memory pool ob j e c t used by the par s ing machine

102 memory pool Pool ;

103

104 // c r e a t e the par s ing machine us ing the memory pool ,

105 // the stream decoder , the events ob j e c t and the name

106 // o f the par s ing grammar r u l e

107 machine Machine(&Pool , &Decoder , &Events , ” l i s t ” ) ;

108

109 // execute the machine t i l l an e r r o r ocures or a

110 // v a l i d syntax t r e e i s cons t ruc ted

111 i f ( ! Execute ( Machine ) )

112 re turn ; // no syntax t r e e was cons t ruc ted

113

114 // get the r e s u l t syntax t r e e

115 demo01 l i s t ∗ r e s u l t ;

116 i f ( ! Machine . GetResult(& r e s u l t ) )

117 {
118 std : : p r i n t f ( ”ERROR: Unable to get the syntax t r e e .\n” ) ;

119 re turn ;

120 }
121

122 // use the t r e e here , c u r r e n t l y j u s t p r i n t

123 // a message f o r the s u c c e s s

124 std : : p r i n t f ( ”SUCCESS: The syntax t r e e i s a v a i l a b l e .\n” ) ;

125 }
126

127 // parse a zero terminated charac t e r array

128 s t a t i c void Parse ( const char ∗ input )

129 {
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130 // p r in t a header f o r the cur rent par s ing opera t i on

131 std : : p r i n t f ( ”================================” ) ;

132 std : : p r i n t f ( ”\nInput :\n%s \n” , input ) ;

133 std : : p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;

134 std : : p r i n t f ( ”\nParse Log :\n” ) ;

135

136 // do the par s ing as raw bytes , us ing the

137 // zero terminated charac t e r array

138 t ry

139 {
140 ParseBytes ( r e i n t e r p r e t c a s t <const u in t8 ∗>( input ) , s t r l e n ( input ) ) ;

141 }
142 catch ( const std : : except ion &e )

143 {
144 // in case o f an except ion , p r i n t i t to the conso l e

145 std : : p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗” ) ;

146 std : : p r i n t f ( ” Exception : %s \n” , e . what ( ) ) ;

147 }
148

149 // opera t ion has completed

150 std : : p r i n t f ( ”\n” ) ;

151 }
152

153 } // namespace demo01

154

155 s t a t i c void PressAnyKey ( void )

156 {
157 // wait key message

158 std : : p r i n t f ( ”\nPress any key to cont inue . . . ” ) ;

159

160 // wait f o r a s i n g l e button to be pre s s ed

161 getch ( ) ;

162 }
163

164 // program entry po int

165 i n t main ( int , char ∗ [ ] )

166 {
167 // check was the par s ing machine code compiled

168 // with the expected i n t e g e r type s i z e s

169 t ry { demo : : check compi l ed opt ions ( ) ; }
170 catch ( const std : : except ion &e )

171 {
172 std : : p r i n t f ( ” Exception : %s \n” , e . what ( ) ) ;

173 re turn −1;

174 }
175

176 // do par s ing o f a c o r r e c t input

177 demo01 : : Parse ( ” 54 ,12 ,74561 ” ) ;

178

179 // do par s ing o f a wrong input

180 // ( because char ’ x ’ i s not a number )

181 demo01 : : Parse ( ” 1 ,9 , x , 4 ” ) ;

182

183 // wait f o r a key

184 PressAnyKey ( ) ;
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185 re turn 0 ;

186 }

5.14.2 Advanced

To report properly syntax errors found in the input functions in the events class

must be overwritten by extending the class. Full source code and a demo can be found

at https://www.experasoft.com/en/products/grammarstudio/examples/. This ex-

ample adds CustomEvents class in the Basic example and uses it instead of events to

receive and print the runtime parsing events:

1 // code i n s i d e the namespace

2

3 // d i r e c t p r i n t i n g o f a UTF32 charac t e r e r ray

4 s t a t i c void s p r i n t f u t f 3 2 ( const uchar ∗ t ex t )

5 {
6 whi le (∗ t ex t ) std : : p r i n t f ( ”%c” , ∗ t ex t++) ;

7 }
8

9 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 // CustomEvents extends events

11 //

12 // t h i s c l a s s r e c e i v e s events during

13 // the par s ing machine runtime

14 //

15 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 c l a s s CustomEvents : pub l i c events

17 {
18 pub l i c :

19 v i r t u a l void OnSyntaxError ( const s y n t a x e r r o r &) ;

20 v i r t u a l void OnExplored ( void ) ;

21 v i r t u a l void OnSuccess ( void ) ;

22 } ;

23

24

25 // event func t i on c a l l e d f o r each syntax e r r o r found

26 void CustomEvents : : OnSyntaxError ( const s y n t a x e r r o r &e )

27 {
28 // e r r o r header

29 std : : p r i n t f ( ”ERROR: ” ) ;

30

31 // coner t the syntax e r r o r do a charac t e r array

32 uchar ∗ t ex t = e . ToArray (NULL) ;

33

34 // p r in t

35 s p r i n t f u t f 3 2 ( t ex t ) ;

36

37 // f r e e the memory

38 d e l e t e [ ] t ex t ;

39

40 // l i n e te rminat ion

41 std : : p r i n t f ( ”\n” ) ;

42 }
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43

44 // event func t i on c a l l e d when e x p l o r a t i o n has completed

45 // and there i s no syntax t r e e cons t ruc ted

46 void CustomEvents : : OnExplored ( void )

47 {
48 std : : p r i n t f ( ”INFO: Explored .\n” ) ;

49 }
50

51 // event func t i on c a l l e d a syntax t r e e i s cons t ruc ted

52 void CustomEvents : : OnSuccess ( void )

53 {
54 std : : p r i n t f ( ”INFO: Success .\n” ) ;

55 }
56

57 // use the new events , by r e p l a c i n g the d e f a u l t system ’ events ’

58 s t a t i c void ParseBytes ( const u in t8 ∗ input , u i n t l ength )

59 {
60 . . . . . . .

61

62 CustomEvents Events ;

63

64 . . . . . . .

65 }

5.15 Expert

After a syntax tree element is available, it can be iterated as much as need before

its released. The following glue code can be added to the advanced example to view

the resulted syntax tree. Full source code and a demo can be found at https://www.

experasoft.com/en/products/grammarstudio/examples/.

1 // add the except i on s header

2 #inc lude <except ion>

3

4 // add the ’ i n t e g e r ’ r u l e header

5 #inc lude ” demo t r e e in t eg e r . h”

6

7 . . . . .

8

9 s t a t i c void Inva l idTree ( void )

10 {
11 throw std : : runt ime e r ro r ( ”Bad formed syntax t r e e ” ) ;

12 }
13

14 s t a t i c void Pr in tTre e In t ege r ( demo integer ∗ i , u i n t depth )

15 {
16 // ident based on the depth

17 f o r ( u i n t k=0; k<depth ; k++)

18 std : : p r i n t f ( ” ” ) ;

19

20 // check the i n t e g e r r u l e concatenat ion index

21 switch ( i−>Index ( ) )
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22 {
23 case 0 :

24 {
25 // i t e r a t e the d i g i t s found and pr in t them

26 f o r (demo : : l i s t < uint > : : Item ∗e = i−>a l t . c0−>h0 . F i r s t ;

27 e ; e = e−>Next )

28 std : : p r i n t f ( ”%c” , e−>Data ) ;

29 } break ;

30

31 // the i n t e g e r r u l e have only one concatenat ion

32 d e f a u l t : Inva l idTree ( ) ;

33 }
34

35 // end

36 std : : p r i n t f ( ”\n” ) ;

37 }
38

39 s t a t i c void Pr in tTree St r ing (demo : : s t r i n g &s , u i n t depth )

40 {
41 // ident based on the depth

42 f o r ( u i n t k=0; k<depth ; k++)

43 std : : p r i n t f ( ” ” ) ;

44

45 // p r in t a l l chars in the s t r i n g

46 s p r i n t f u t f 3 2 ( s . Text ( ) , s . Length ( ) ) ;

47

48 // end

49 std : : p r i n t f ( ”\n” ) ;

50 }
51

52 s t a t i c void PrintTree ( demo l i s t ∗ l i s t )

53 {
54 // header

55 std : : p r i n t f ( ”TREE:\n” ) ;

56

57 // check the concatenat ion index o f the ’ l i s t ’ r u l e

58 switch ( l i s t −>Index ( ) )

59 {
60 case 0 :

61 {
62 // p r in t the f i r s t r u l e i n t e g e r ’ r 0 i n t e g e r ’

63 // that i s the s t a r t o f the ’ l i s t ’ r u l e

64 Pr in tTre e In t ege r ( l i s t −>a l t . c0−>r 0 in t eg e r , 0) ;

65

66 // i t e r a t e a l l second element that i s a l i s t o f groups

67 typede f demo l i s t : : ALT : : C0 ∗ l i s t C 0 t ;

68 f o r (demo : : l i s t <l i s t C 0 t > : : Item ∗e = l i s t −>a l t . c0−>g1 . F i r s t ;

69 e ; e = e−>Next )

70 {
71 // en t e r i ng in depth

72 std : : p r i n t f ( ” (\n” ) ;

73

74 // check the concatenat ion index

75 switch ( e−>Data−>Index )

76 {
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77 case 0 :

78 {
79 // get a po in t e r to the group ’ s f i r s t concatenat ion

80 l i s t C 0 t : : A1 : : C0 ∗groupC0 = e−>Data−>Value . c0 ;

81

82 // p r in t the f i r s t item s t r i n g ’ s0 ’

83 Pr in tTree St r ing ( groupC0−>s0 , 1) ;

84

85 // p r in t the second item r u l e i n t e g e r ’ r 1 i n t e g e r ’

86 Pr in tTre e In t ege r ( groupC0−>r 1 in t eg e r , 1) ;

87 } break ;

88

89 // the f i r s t group does have one concatenat ion only

90 d e f a u l t :

91 Inva l idTree ( ) ;

92 }
93

94 // l e a v i n g the depth

95 std : : p r i n t f ( ” ) \n” ) ;

96 }
97 } break ;

98

99 // the grammar have only a s i n g l e concatenat ion i n s i d e

100 // any other v a l i d i s i n v a l i d

101 d e f a u l t : Inva l idTree ( ) ;

102 }
103 }
104

105 s t a t i c void ParseBytes ( const u in t8 ∗ input , u i n t l ength )

106 {
107 . . . . . .

108

109 demo l i s t ∗ r e s u l t ;

110

111 . . . . . .

112

113 // p r in t the t r e e when a v a i l a b l e

114 PrintTree ( r e s u l t ) ;

115 }
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Chapter 6

Use Cases

In this chapter are defined grammars forming valid PM, starting from more simple

to more complex cases.

6.1 Text Splitter

To recognize text expressions from the input one may easy write the lexer and parser

grammars in examples 6.1 and 6.2. The lexer grammar reads as: a ’word’ is one or more

case insensitive ’a’-’z’ letters and a number is one or more digits. The parser grammar

reads as: a text is one or more expressions that each is one or more words that in

between have an OPTIONAL comma and a REQUIRED space’ and MUST finish with

a full stop. A valid input for a PM generated from this two grammars will be: "Use

case 1: Hello World". Additionally one may use only a parser grammar to achieve

the same as in example 6.3.

Example 6.1: Text splitter lexer grammar

1 word = 1∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ )

2 number = 1∗ ’0 ’− ’9 ’

Example 6.2: Text splitter parser grammar

1 t ex t = 1∗ exp r e s s i on

2 exp r e s s i on = ({word} / {number})

3 ∗(0∗1 ” ,” ” ” ({word} / {number}) )

4 ” .”
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Example 6.3: Text splitter standalone parser grammar

1 t ex t = 1∗ exp r e s s i on

2 exp r e s s i on = ( word / number )

3 ∗(0∗1 ” ,” ” ” ( word / number ) )

4 ” .”

5 word = 1∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ )

6 number = 1∗ ’0 ’− ’9 ’

However the two approaches will have different syntax trees. The first way with the

2 grammars, is expected to run faster in the general case, because the Lexer operates

faster then the Parser, because no context information is recorded, as a consequence each

token ’word’ and ’number’ will be represented by a single string type of object. In the

second approach with single grammar, the context information is recorded, that will take

more memory and time to be recognized and constructed. As a general rule, everything

that represents single tokens SHOULD be moved into the Lexer grammar.

6.2 Mathematical Expression

In many programming languages mathematical expressions are build in to match the

most popular infix notation. Such recognition can be made as the examples 6.4 and 6.5.

Example 6.4: Math expression lexer grammar

1 varname = 1∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ )

2 i n t e g e r = 1∗ ’0 ’− ’9 ’

3 f l o a t = 1∗ ’0 ’− ’9 ’ ” . ” ∗ ’0 ’− ’9 ’

Example 6.5: Math expression parser grammar

1 exp r e s s i on = add i t i on

2 add i t i on = m u l t i p l i c a t i o n

3 ∗((”+” / ”−”) m u l t i p l i c a t i o n )

4 m u l t i p l i c a t i o n = value ∗ ( (”∗” / ”/”) va lue )

5 value = { i n t e g e r } /

6 { f l o a t } /

7 {varname} /

8 ”(” add i t i on ”) ”

As defined these grammars will generate PM which will be LL(1) and accept the

following expressions:

• 2*x

• 5*(alpha+60*2)

• 2*(21-(55/y)*2)

• and so on...
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If one wants to introduce space in between the digits and signs, one may change the

parser grammar as in this example 6.6.

Example 6.6: Math expression parser grammar with white space

1 exp r e s s i on = ∗WSP add i t i on

2 add i t i on = m u l t i p l i c a t i o n

3 ∗((”+” / ”−”) ∗WSP m u l t i p l i c a t i o n )

4 m u l t i p l i c a t i o n = number ∗ ( (”∗” / ”/”) ∗WSP number )

5 number = ({ i n t e g e r } /

6 { f l o a t } /

7 {varname} /

8 ”(” ∗WSP add i t i on ”) ”)

9 ∗WSP

10 WSP = %x20 / %x9

The new introduced WSP rule is short for ’white space’ (a space or a horizontal tab)

and will be OPTIONAL at the beginning of the math expression and after each symbol

and a phrase token - all currently in the ’number’ rule. The priority of the multiplication

is higher and comes naturally from the rules relation. These grammars form a LL(1)

parser that can parse linearly input as:24 / 4.4 + 11 * (7.8 - 2.).

6.3 Log File Reader

Many computer programs are saving some kind of log files for the started or com-

pleted operations, for the errors and warnings occurred during the program runtime. This

logs are often specifically formated for the company needs. One may define grammars

(as example 6.7 and 6.8) that read this logs without the need to create a specific parser

by hand, if one have a need to make a statistics on the log or another automatic analy-

sis. Additionally when the log structure changes, one have to just update the grammars

defined and recompile the PM. That is expected to save a lot of time from hand coding

the parser at every change.

Example 6.7: Log reader lexer grammar

1 s t r i n g = ’” ’

2 ∗(%x20−%x21 /

3 %x23−%x5B /

4 %x5D−10FFFF /

5 ’\ ’ ( ’\ ’ / ’ ” ’ ) )

6 ’ ” ’

7 word = ( ’A’− ’Z ’ / ’ a ’− ’ z ’ )

8 ∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ / ’0 ’− ’9 ’ / ’− ’ / ’ ’ )

9 number = 1∗ ’0 ’− ’9 ’ [ ” . ” ∗ ’ 0 ’− ’ 9 ’ ]
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Example 6.8: Log reader parser grammar

1 l og = ∗ l i n e

2 l i n e = item ∗ (” ,” item ) CRLF

3 item = { s t r i n g } / {word} / {number}
4 CRLF = %xD %xA

In words, the example lexer grammar is recognizing simple tokens as:

• string: starting and ending with double quotes with a possible escaping ’\’ char

followed by ’\’ or double quote

• number: an integer or a float

• words: starting with a letter and optionally continuing with a letter, digit, dash

or underscore.

The parser grammar is recognizing an input of lines terminated with the Internet standard

line terminator. Each line MUST have one or more items separated by a comma, and

each item is one of the lexer defined tokens: string, word or a number. No white space

is permitted inside the log file, but it can be added in the same way as in the math

expression use case in a section 6.2

6.4 Simple Markup Language

Many companies have option files that have to be human and machine readable.

To define simple markup language for this purpose one may use as a base the Extended

Markup Language (XML)[4] as in examples 6.9 and 6.10. A valid input to a PM generated

by these grammars would be example 6.11.

Example 6.9: Simple ML lexer grammar

1 comment−s t a r t = ”<!−−”

2 comment−f i n a l = ”−−>”

3 tag = ”<” 0∗1 ”/”

4 word = 1∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ )

Example 6.10: Simple ML parser grammar

1 document = ∗WSP tag ∗WSP

2 tag = tag−s t a r t content tag−f i n a l

3 tag−s t a r t = { tag , ”<”} ∗WSP {word} ∗WSP ’> ’

4 tag−f i n a l = { tag , ”</”} ∗WSP {word} ∗WSP ’> ’

5 content = ∗( tag / %x21−3B / %x3D−10FFFF / {word} / WSP)

6 WSP = %x9 / ; tab

7 %x13 %x10 / ; new l i n e

8 %x20 / ; space

9 {comment−s t a r t }
10 ∗(%x0−10FFFF / {word} / {comment−s t a r t } / { tag })

11 {comment−f i n a l }
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Example 6.11: Simple ML input

1 <opt ions>

2 <−− t h i s i s an opt ion f i l e with one s t r i n g −−>
3 <s t r i ng>h e l l o word!</ s t r i ng>

4 </opt ions>

The defined examples, construct a language that accepts white space before and after

any word and symbol. Additionally the comment text is syntactically available that is

defined to ”everything between <-- and --> sequences”.

6.5 Simple C/C++

If one wants to create a script language, one may base it on the C/C++ programming

languages. On the first phase of the parsing the syntax is checked with the PM, on a

second phase the semantical meaning of the parsed code could be checked and finally an

interpreter or a generator to another language (possibly Assembler) could execute the

syntactically and semantically valid parsed input. Examples 6.12 and 6.13 are containing

grammars that can construct such a C similar PM.

Example 6.12: Simple C/C++ lexer

1 comment = ”/∗” / ”∗/” / ”//”

2 CRLF = %x13 %x10

3 keyword = %s ” const ” / %s ” i f ”
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Example 6.13: Simple C/C++ parser

1 document = ∗WSP ∗ f unc t i on

2 f unc t i on = %s ” func t i on ” 1∗WSP name ∗WSP

3 func−args scope

4 func−args = ’ ( ’ ∗WSP [ argument− l i s t ] ’ ) ’

5 func−c a l l = ’ ( ’ ∗WSP [ operat ion− l i s t ] ’ ) ’

6 argument− l i s t = argument 1∗WSP ∗ ( ’ , ’ 1∗WSP argument 1∗WSP)

7 argument = [{ keyword , ” const ”} 1∗WSP] type−and−name

8 type−and−name = name 1∗WSP name

9 operat ion− l i s t = operat i on ∗ ( ’ , ’ 1∗WSP operat i on )

10 scope = ’{ ’ WSP ∗ d e c l a r a t i o n ”}” 1∗WSP

11 d e c l a r a t i o n = decl−var / dec l− i f

12 dec l−var = type−and−name ∗WSP [ ’= ’ ∗WSP operat i on ] ’ ; ’ ∗WSP

13 dec l− i f = {keyword , ” i f ”} ∗WSP ’ ( ’ ∗WSP operat i on ’ ) ’ ∗WSP

14 scope [{ keyword , ” e l s e ”} ∗WSP scope ]

15 opera t ion = add i t i on

16 add i t i on = m u l t i p l i c a t i o n

17 ∗((”+” / ”−”) ∗WSP m u l t i p l i c a t i o n )

18 m u l t i p l i c a t i o n = value ∗WSP

19 ∗ ( (”∗” / ”/”) ∗WSP value ∗WSP)

20 value = name 0∗1 func−c a l l /

21 number /

22 ”(” ∗WSP operat i on ”) ”

23 name = ( ’ a ’− ’ z ’ / ’A’− ’Z ’ )

24 ∗ ( ’A’− ’Z ’ / ’ a ’− ’ z ’ / ’0 ’− ’9 ’ / ’ ’ )

25 number = 1∗ ’0 ’− ’9 ’ [ ’ . ’ ∗ ’ 0 ’− ’ 9 ’ ]

26 WSP = %x9 / %x20 / {CRLF} /

27 l i n e−comment / text−comment

28 l i n e−comment = {comment , ”//”} ∗(%x0−10FFFF / {comment}) {CRLF}
29 text−comment = {comment , ”/∗”}
30 ∗(

31 %x0−10FFFF /

32 {CRLF} /

33 {comment , ”/∗”} /

34 {comment , ”//”}
35 )

36 {comment , ”∗/”}

These grammars form a LL(1) grammar for parsing C/C++ like source code.

The semantic analysis is not defined into the grammar, as for example is it an error

if one calls a function that is not defined, or calls a function that is defined later in the

source code. Because the parsing phase is completed fully before the semantic analysis

is started, one may simply permit calling of functions that are defined later in the code,

that is one of the advantages of having the parsing phrase separate of any other phase.
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